Waarp R66 manual

License: GPL V3

Presentation

oy
UAARP

Open Source

Waarp is an open source project with multiple subelements. There are related to each
other, and they improve the developement by being in several separated modules.

All are Open Source projects and fully in Java. The global license is GPL V3.

Production purpose

Waarp is a project that provides among other an open source massive file transfer monitor
in Java. Its goal is to unify several protocols (FTP, FTPS, SSH, HTTP and proprietary
protocols) in an efficient and secured way. Its purpose is to enable bridging between
several protocols and to enable dynamic pre or post action on transfer or other commands.
Currently FTP(S) and efficient and secure R66 protocols are implemented. HTTP is
supported but not yet in production release.

This project was developped initially for the French Ministery of Finance. The 3 main
components (originally named GoldenGate, GoldenGate FTP and OpenR66) are in
production in the Ministery since end of 2007. It is also in production in the French

Gendarmerie Nationale since 2012 (see Crawd User). It is an Open Source project based
on an independent community.

Professional services

The company named Waarp propose professional services (contact through info at
waarp.it). In addition to professional services, Waarp company is able to propose
extensions to Waarp in order to centralize all configurations and events for a large
installation, to provide easiness of exploitation, monitoring and therefore for the production.
This software is based on Waarp standard API, with no proprietary or backdoor access.
We commit to keep Waarp to be a full functional Open Source solution.

Support

It is preferable to use the appropriate following contact:
info@waarp.it

The company named Waarp holds the ability to provide professional services:
* Installation and parameters
* Integration, additional development
» Support, Maintenance, phone support

* You can also obviously use the Github issues and pull requests (see Downloads to
get to Github websites).

http://www.waarp.it

mailto:info@waarp.it
http://www.waarp.it/

Index

PrESEIEALION.euiitieitiiiiet ettt et h ettt sttt h e bt ea e e na b e e st e eabeeeabeeea 1
OPCTL SOUICE......vieeiiieeeiieeeiteeetee ettt e etteeeteeessteeessseeessseeesseeessseeensseesnseeessseeensseeeasseeenssesensseesnssessnnsns 1
PrOUCHION PUIPOSE......eiiiiiieiiiie ettt ettt e et e et e e et e e et e e s teeessaaeesssaeesssaeessseaenssseeeesasnseeeasannes 1
PrOfeSSIONAl SETVICES. ... eeuviiiiiriiitiiieritet ettt ettt ettt be et st sbe et et e bt eteeeneees 2

N 00) 010 o F SRR SSP 3

AT b L T 'y RPN 9
From where comes the idea of Waarp?.........cccooviiiiiiiiiiiieceeee et 9
Why a proprietary protocol therefore 7............oooviviiiiiiiiicee e 10
What kind of proprietary protoCOl 1S 1t7.......c.ieiiuiieeiiieciie ettt tee e aae e e e 10

Waarp R66: software for massive file transfer with monitoring: Waarp Route66...............cc.eee....e. 11
DOWNLOA. ...ttt et ettt e b e st e eb e et e nb e st e e 14

PaACKAZES.eeiiiieeiieeee et e et e et e e e ta e e e tbe e e taeeebaeeebaeeaaaaaaaaanns 14
Presentation of Waarp R66: Massive File Transfer MONItOr.........ccccevveveiviiniinienieeiiceieeeene 15
Efficient and SECUTE.........coouiiiiiiiieie ettt 15
Adaptation to functional NEEAS..........ccueieiiiiiiiieeie e e 15
Pre and Post transfer ProCeAUIES..........c.ueiviiiiiiiieiie ettt ettt 16
Integration, Administration and Production.............cccceeciieriiireniie et 17
HiStOTY O tTANSTETS. .. .eeiiiieiiiiecie ettt e e st e e s e e e sabeeesaaeeesaaeesseeensaaennns 19
Independence with server platforms............ccoeoiiiiiiiiiieiieeeee e 19
USAZE MOAC. ... eeeeeeieiiiie ettt ettt e e e et e e s te e e sateeestaeeessseeensaeeensseeessseeesssaeansaeesnseeennssseeens 19
Partners: Who are they?........oooviiiiiiiciie ettt e et e et e e e aae e e naraeeaeeenns 20
How to operate ROG6 transters.........cceieiiiriiiiiiiiieciiee et 21
Usable with many kind of Databases(centralized or distributed)...........ccccevvvviiiiieeenniiiieneenn. 22
Some basic definitions and understanding............coeceeriieiiiiiienie e 23
What is client/server/heavy ClENt...........c.ooviiiiiiiiiiiieie ettt 23
Who 1S the requesSter/TEQUESLEA.ccviiieiieeeiie et e e e e e e e e e e enes 23
WHhaAL Q€ TUIE LY PES...uuiieiiiieciiieciie ettt ettt e et e e et e e et e e e taeessaaeessseeesssaeessseeenseeesseens 24
What happens With the task..........ccoooiiiiiiiiiiii e 24
What are the synchronous/asynchronous mode...........c.cceecveeeriieeiiieeiiieeieecieeeeee e 25
What are the various usages of folders..........ccuvieiiiiiiiiiiiii e 25
INSEAIIALION. ...ttt ettt b et sttt et e et e et naee 26
XML CONTIGUIALION.eieiiieeiiieesieeeieeertee et e e et e e eeeaeeeetaeesseeeesseesesseeensseeessseeensseeenssessnnses 27
Password CONTIGUIALION.cccuiiiiiiiieiii ettt ettt et te et esaeeeeenneeas 28
(3 011073 2:13] 1) /USRS RPRRRRPPPR 29

For SSL connection without authentication Of CLENTS......covvuuummeeeeeeeeeieee e, 30

For SSL connection with authentication Of CHIENTS.........oovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeees 30

Database CONTIGUIALION.ieiiiiiieiieeie ettt ettt et ebeestaeebeesaeeesbeessaeenbeeseeesseensns 31
e o441 3 VS PRSP 32
Extra Waarp JVIM OPHIONS.cc..eeiuiiiiieiieeie ettt sttt et eteesaeeesbeessaesnteenaeeenseesnnsaeesnnsaeaans 33
XML CONTIGUIALION.vieeiieiieeiieeteeeie et e et et e eteeteeeaeebeeseaeenseessseesseessseensseeesnsseeesnsseeennsseens 35
Waarp R66 Server Configuration File..........cccciviiiiiiiiiiiiiiieeeceeee e 36
Waarp R66 Client Configuration File...........cooouiiiiiiiiiiiiiiiiiieeeee e 43
Waarp R66 Client Without Database Configuration File...........ccccccveviiiviieniiniiienieeee. 48
Waarp R66 Client for Submit Only Configuration File............cccccovviiiiiiiieieniiieeeeee. 52
Waarp R66 Limit Configuration File...........coccoiiiiiiiiiiiiiiiieeee e 54
Waarp R66 Rule Configuration File...........ccoociiiiiiiiiiiiiiiiiiecieceece e 55
Waarp R66 Authentication Configuration File............cccooeeiiiiiiiiiiiiiiiecce e 58
TASKS 10 TULES. ..ottt ettt ettt et st e bt e et e et e e naae e e 60
LLOG ettt et h et et h e e bt e a e bt e e bt e nteennteennteenee 62
IMIOVE. ...ttt ettt et et e st e et e e s e e ate s st enseesaeeseenseensesneeseenseenseeeneeens 62
MOVERENAMEttt ettt sttt sttt et e st e sanee e 63
(010 S OSSOSO PR OPPTRPSROTRON 63
COPYRENAME ...ttt ettt ettt et e st e be e st e e seesnsaesnseesnneeenns 64
VALIDFILEPATH. ..ottt sttt sttt s 64
DELETEttt ettt e ae e bttt s et e bt et e e st e e bt et e s et e bt e b et e naeenreas 65
LINKRENAMEottt sttt ettt nte s s e teeneesseeseensaeeneeennseennseens 65
RENAMEttt ettt et he et st e s bt et ebtenbeetesaaeenareens 66
EXEC ettt ettt h bt e a e e h et e a e e bt e bt e bt e e nteeanaeennreen 66
EXECMOVE..... oottt ettt et st ettt e s st et e ente e st e enseeeseeennseennseenes 67
EXECOUTPUT ...ttt ettt sttt ettt st e st e st e et e ebeeeaeee 68
EXECTAVAL. ..ottt ettt et a et et s et e bt et e s st et e entesae e seeeanteesnneenns 69
TRANSFER ...ttt ettt ettt et e s e e e beentesseebeenseeenaeennseennseens 69
RESCHEDULE ..ottt sttt ettt sttt et et sbe et saeenaeeens 70
TAR ettt ettt h ettt e h e e bt en e e h et ea e she et en b e e enteeeneeens 72
ZUIP.eeeeeee ettt ettt et ettt e aeeat e st et e e nt e he et e ente st et e eneenseenteeneennreens 72
TRANSCODE ..ottt ettt ettt et sb e et et e sbe e bt eatesaeenaaeens 73
SINMP...c ettt ettt ettt s e e bt e st e a e bt e a b e e et e bt eat e eh e e bt et e ene et enteeenteas 74
BT P ettt ettt a b e a e et e e nteea e et e et e e n e e bt enteenteteenteeneeeneeens 74
WaATP ROO OPLIONS. ..cueiieiiieiieiiieiie ettt ettt ettt ettt e et e st e e beesateeabeesseeenseesseesnseensnesaseesannees 77
Limit CPU / CONNEXION. ...ceutteiieiieiieiteeiteteeiteettete ettt e st eite st e bt eate st e bt estesbeesabeeenseeenseeeneeennee 77
Check of IP on servers and CHENTS.........c.cecciiieiiieeeiie ettt see e e e e e e 77

HOSE S CLIENT . c.ceeeeeiiieeieeeeeeeeeeeeeeeeeeeeeee ettt eee e e e e e ee e e e e e e e e e e e ee e e e e e e ee e e e e aeeeeeaaneeeeerennns 77

CryptoOgraphic SUPPOTL.....ccuvieiiieiiiieiieeie ettt ettt et e ette et et e et e st e esbeeseaeebeessaeenseesnsesnseennsens 77

Store Task within XML file for Thin ClHent............cceovvieiiierieiiieiieeiieieeie e 78
Usage of NO Database fO1 SEIVET.......cccviiiiiiieiiieeiieeeie ettt 78
Control on resStart tranSTET........ueiiiiiiiiiiee e 78
Usage of Waarp LocalEXeC DaemON.........ccceeiiiiiieiiieiieiieciecie ettt 78
Usage Of FAStMDS SUPPOTL......ccuiiiiiiieeiieeeiieeeiee et ettt e etee e etee e st e e s beeesaseeessssaaeesesnsnaneaeeannes 78
Usage of the same database between several RO6 SETVETS.........c.cccueeviieiiieniieiieeieeiieeieee e 79
Usage of Multiple MONItOrS SUPPOTTL.......cccveerrieriieriierteeriieeieeseeereesseeesseesseeeseesseesseesssseeessnses 79
USa@E Of TRIITt SUPPOTL...ccueiiieiiieeiiee ettt e e et e e et e e s taeeestaeessnaeeeeeesnnsaaaaeeas 81
Error task on Init Step transSer..........coouiiiiiiiiieiiee s 81
WiINAOWS SEIVICE SUPPOTTL....veiiuiietieeiieitieeieertieeteesteeeteesteeesreeseessaeesseessseesseessseeseesssessseesseennses 82
Usage Of EXECIAVA ClaSS......ccciiiiiiiiciie ettt ettt e e e e sae e e eaaeeeaaeeenseeenenas 83
TTANSCOAE SUPPOTL...ceneiieiiieiieeiieeiie ettt ettt et et e et estte e bt esaaeeteessbeenbeessbesaseesnsbeesnnsaeeennsneans 84
FTP CLIENE SUPPOIL...cceiiiiieiiieiieeieerite et ette et etteeteesteeebeesteeesseesseessseesseeesseensseeessseeesssseesansees 87
ProXy/ReEVerse PrOXY SUPPOTIL.......cciviiiiiieieiieeiieeeettee ettt et eetee e s teeesteeesnaaeesesaaesssaeesseeenssaeens 87
G1ODAl DIESt SUPPOTL....cutieniieeiiieiieeteeite ettt ettt et e stteebeesabeeaeessbeenseeeensseeeanseeeeanseeesnns 87
S REQUEST....ceeiiiieiiie ettt et e et e e tteeetae e e bt eesasaeesssaeeseannsseeeesennnssaeeeeas 87
Enhanced capability to handle filename with "blank" characters............cccceevciveeviieeciiieeeeennn, 88
Possibility to block/unblock NEW reqUESES..........cccuieriieiiiiiiieiieie et 88
Focus on RESCHEDULE TaskK........ccctiiiiiiiiiieieieeseeeeeee et 88
Add support for internatioNaliZatioN..........c...eccueieeiiieeiiie e e e e earaeee s 90
Controling OULPUL FOTMAL.......cccuiiiiiiiiieiieeie ettt ettt e e et eeenabeeeeaeeee e 90
Wildcard character in request of transfer or SUDMIL............cccveeiieiieiiiienieeieeee e 90
The Special Configuration fields (System mMenu)..........ccccueeriieeriiieeriiie e e 91
BUSTIESS. ¢ttt ettt sttt e a b et a et h ettt st e bt et e eaeeea 91
ROIES. ..ttt ettt et h et a ettt e en e bt et e eteeens 91
ATTASES. .. teeeiiieeette et et e ettt e ettt e et e e et e e ebe e e ettt e e e bt e e tbeeeaaeeeabeeenateeetaeeataaaeeeannnraaaeeeannnns 91
ORI ...ttt ettt ettt b bbbt et b e bt et eebeeea 91
Waarp ROO INEEIMALS........cc.eeiuiiiiieiiecieee ettt ettt et ebe st eeebeessbeessbaaeessaaesssaeeesseeas 93
ROO PTOTOCOL....ccceeiieeiieeee ettt ettt e et e st e e st e e et e e esbeeessabaeeeeeensssaeaeesennnnees 93
171 10| o SO PP PP PP PPPPPPOt 95

F N 11 031 U 1o 1 T} o DO UUPOURPUPRT 96
REQUEST. ...ttt e e et e e e et e e e e e e et ae e e e e nnbar e eaeaaaaaaaens 96
PrE-TaASKS. ..ottt st ettt e 96
Data TranSTOr......coouiiiiiiiiee ettt et 96
POST-ACHIONS. ...ttt e et e et e e et e e e bt eesaaeeessaeeessseeesseeesaeeeeenssraeaeeeennraeaens 97

ENA REQUEST.. ..ot ettt ettt et e et e e b e eabeenseesnbeeneee s 97

If the HOSt 1S the SENAETcouiiiiiiiiiieiieeee ettt 98

If the HOSt 1S the TECEIVETiitiiiiiieiie et et e e e 98
Transfer RESTATTING.cc.oiiiuieiieiiieie ettt ettt et ettt e e sseeeeateeeenneeeens 99
COMIMANAS. ...ttt ettt ettt e s at e bt et e st e e bt enbeeaee bt easesseenseenbeeenseeenneeenneens 100
ROOSEIVET ...ttt ettt e e eat e et e e bt e e e beeeeneeee 100
ServerInitDatabase.coueeiiriiiiiie et 100
ServerEXpOrtCONTIGUIALION.eeiiiiiieiieeie ettt et ste ettt e ebeesteeebeesteeeseessaeensaeeesnsaeaas 101
(107 V e 2514 10) o F USSP 101
(010331 Ted F101070) 4 AU SRR 102
SETVETSHULAOWILeeiiiiietiete ettt ettt et b et e st e bt et eseteesateeenneenas 102
07 24 010 AP UUUPRRRE 103
LOGEXtENAE@AEXPOTL....c..viiiiiiiieiieeieee ettt et sttt ettt e e et eeeenseeeennee 103
ChangeBandWidthLAmitS.........c.oeiviiiiiieiiieiieeie ettt e e e e sesreeeseseeeesaseeeennnes 104
SUDIMIETTANSTETee ettt e e e e et e e eaaeeetaeesnsaeessseeesssaeaeenne 105
MultipleSUbMItTIANSTRLeoiiiiiieiieeeee ettt e e aaee e 105
DIrECETTANSTETcniiieitee ettt sttt e e e e e 106
MUItIPIEDITECt TTANSTETeeciiieeeiie ettt e e e s e e sareeessreeesseeenenas 106
SeNATRIOUGNCIIENL.coiiiiiiieiiee ettt ettt e et eeesnsaee s 106
ReECVTRIOUZNCIIENL.eovviiiiiiiiiiciteie ettt e be et eesbe e aaeesbaesaeeeesneaeenes 106
ProgreSsBarTTanS er.......cccuuiiiiiiiciie ettt et e e raaaae s 106
ReQUESTTTANSTETc..iieiiieiie ettt sttt et e et e e e eteeeenbeeeennes 107
RequestInformation............uiieiiiiieiie et et e e 107
Command 1NE NEIPET..........eiiiiiiiiie e e e e e et e e e e erraaee s 109
DIEPENACTICIES. ...ttt ettt ettt ettt et e et e et e sabeeabeeesbeenseessbesnseesaseenseessseesensseesnnsneaens 112
WIKT PAIT.ciiieeiee ettt e ettt e ettt e st e e s aateesabeeeenbaeensteeesseeessaeensseeansneenssnanns 113
ROOAUNENEICATION.cccuviieeiiiieciie ettt ettt e e e et e e et eestaeesbaeesssaaeeeeesnnssaaeeeennnenes 113
Special CONTIGUIATION.ooiuiiiiiiiiieiieeie ettt ettt e st e et esibeeeeeensaeeennnes 113
Centralization OF LOES....ccviiiiiiiiieiiecie ettt ettt et e b e e teeesbeebeeesbeeeensneeas 115
ROO6 CIUSIET OF HAL......eeeieeeeeeeee ettt ettt s e st e e s sae e e saaeessaeesseesnsaaennns 116
Some specific teChnICal TEEIMS.covuiiiiieiiieii e e 117
Usage of the same database between several RO6 SErvers..........coceeveeeiienciienieenveennen. 117
Usage of Multiple MONItOrs SUPPOTTL........eeeeereeriueeeriieeeiieeeieeesieeesreeeseaeeessaeesssneessneeens 117

ROO I DIMZ.....ooiiiiieeeeee ettt ettt sttt et b et ettt et e e naneens 119
Waarp GateWay FTP.....c.ooo ittt et e e 119
Waarp R66 in forward mode............ooecuiiiiiiiiiiii ettt 119

Waarp ProXy ROO.........oooiiiiiiiiiieeeeee ettt ettt ettt e et e e 119

ROO EMDEAUE....... ettt e s e e eevennns 121

NAUVELY 10 JAVA. ...ttt ettt e et e bt e s saeeseessseeseessseeeesseeeanes 121

OULSIAC JAVA....eeiiiiieeiie ettt e et e e sttt e et eeesaeeesaeesasaeesssaaeeeeeasssaaeeesensssnes 121

RO6 With Other ProtOCOIS.coviiiiiiiiiiiiieeeee et 122
NAIVE INEEZTALION.eeiiiieeeiiieeeieeeiee ettt e ete et e e et e estbeeestbeeeeaeeessaeessseeesnseeensseessannnsnneeeens 122

Task through INtEEration...........cccciiieiiieeiieee et e e s raeesaneeaeeas 122
Platform cOmMPatiDIIty.......ceeiuiiiiieiieie ettt ettt e e s enbaee e 124
Waarp R66 Administration & MONIEOTING..........ecviiiuieriieiiieriieitieeieeieesteeieeeaeenseeesaeeeesssaeeenes 125

|5 10T\ (0] 4 V1) 51 Yo PRSPPI 125
SINMP MONIEOTINE.eivieiieeiiieiie et eite ettt ettt e et e e tteetteebeessbeeseesaseenseessseenseeeennseeesnnseeens 126
HTTPS AdMINISIIALOT.eiiiiiiiiiiiieeiteeite ettt ettt sttt e e et e e e sabeeee e 126

The Special Configuration fields (System menu)..........ccceeeevvieriiieercieeniiiee e 132
BUSINESS. ...ttt ettt sttt sttt e b e 132

ROIES ..ttt ettt ettt sttt et e et e enteeeas 132

AJTASCS. .. tveeetieecee ettt et e e e s et e e e e et e et e e e abee e aaee e taeeataeenreeennraeennreeanns 132

ORI ...ttt ettt ettt b ettt et 133

Waarp Central AdMINISTIALOT.cc.iiiiieiieeieeieecie ettt ettt e et e e e e bt e sebeeaeessaeesaeessneeeesssaaeenes 134
WaarP ROO GUILL......oeiiiieieeieeee ettt et sttt s e b e e st e eseeeaseeenneeenseeenneeens 139
Thrift SUPPOTE fO1 ROO........ooiiiiiieiiee ettt ettt ettt e e beesabeeeenes 140
WaAIP LOCAL EXEC..cuuiiiiiiiieiiieeiee et et ettt e e st e e st e e et e e e snseeenbeeenaaaeens 141
Waarp Xml EQILOT.......cooviiiiieeie ettt et e et e et e e etae e saaeeenbaeesnseeesssaeennseaaeens 142
Waap PassWOrd TOOL.........cooiiiiiieiieie ettt et sttt et e st e e b e eeaeenbeesneeensee s 143
WAATDP FTP..eeeeee ettt ettt e e et e e et e et e e e sbeeesseeensaeeenssaeennssnaeaeenn 144
Configuration of Waarp FTP.........cooiiioiiieeee ettt e e e e e ieraae e 146

What is Waarp?

Waarp is composed of several parts, most of them could be used separately without the
full package:

* an open FTP(S) Server with an extension to serve as a gateway for R66: it can be
used in a stand alone version to fit your needs.

* an open HTTP Server but only intend to be used within a Waarp gateway: this
component is not yet publicly available.

* an open proprietary file transfer monitor, R66 it can be used in a stand alone
version to fit your needs.

* a kernel for common actions (Waarp) that could be taken when merging any part of
the above.

From where comes the idea of Waarp?

The start idea was to be able to receive through several protocols some files (or not files
but data) and to transmit them into a system not directly accessible, but without breaking
the global vision of the data transfer (where it is, what status, and so on...).

A standard FTP server (or SFTP or FTPS) do not allow to make post action (and of
course neither pre action) when a file transfer occurs. So the reason of this new
project to be able to imply business actions that can be whatever the need when an
event occurs in the transfer protocol.

For instance, when a file is to be transmitted through an FTP service, perhaps some tests
should be done to see if the next business step (another application) is ready to accept
transfers. When a file is transmitted, an action can occur like for instance checking of
integrity (business vision) or retransmission to another business partner (using eventually
a different protocol). Also one possibly wants to follow any transfers (or other actions
defined in the protocols) and to log them somewhere in its own format, either to just be
able to look at what happened or even to restart some actions to correct wrong situation in
production.

To be able to do all of that, we decided to implement the most common used file transfer
protocols (FTP, HTTP) in such a way they can fulfill those behaviours. FTP was the first
step. HTTP for now is simply a bunch of JSP and classes attached to this JSP. FTPS
(implicit or explicit) is now supported.

Of course, if they can do all the stuff we present before, they can also do simple thing like
standard FTP server.

Why a proprietary protocol therefore ?

Well, all of those protocols suffers from pitfalls like:

When a file is transfered, even if it is by block (FTP BLOCK mode), it does not have
any control on each block transfered. So if something goes wrong on the network, it
could happened that the sender or the receiver will not see what happens. The
proprietary protocol will implement such a check on each transfered block.

When a file transfered ends up abnormally, it does not have true facility to enable to
restart from where it falls. Even the FTP REST command is not enough since who
knows at which step the error occurs. And asking for the size of the remote file
could be not enough. The proprietary protocol will implement such a restart facility
on failed transfer.

In production context, if you have to send many files, how do you follow those
transfers and check them? Some FTP clients does such thing, however they
generally don't have the hability to enable planned production. The proprietary
protocol will implement such control, planning, and adding some functionalities like
limitating (or not) the number of concurrent file transfers.

Of course, all of the behaviours we described before for GoldenGate will be
implemented in this proprietary protocol.

What kind of proprietary protocol is it?

It is a proprietary protocol that mimic the CFT PESIT one plus some extension,
including in the protocol itself (block checking and restarting), but also to enable
specific functionalities like MD5 block control (optional), restart possibilities,
duplexing network connection, SSL support, database support, ...

Note that Waarp protocol is not compatible with PESIT, but there are some facilities
to setup a PESIT/Waarp gateway.

Finally Waarp protocol is proprietary in the sens it does not follow any standard ISO
or whatever protocol, but it is open and freely implementable since it is documented
and open source.

Waarp R66: software for massive file transfer
with monitoring: Waarp Route66

This software is a file transfer monitor in protected and powerful contexts.

B[

RE6 Protocol (both iniiators) j R66 Monitor File Transfer Server 'ﬁfl R66 Light Client

—— R66 Protocol (1 initator) == (no cialt.sl.lzza.s.:e?I
. GoldenGate Gatewa Rl RE6 Heavy Client
HTTF or FTP Protocol ﬁ erGare Gare Vi % light database)
|DEC Protocol (R66)
= Database through |DBC & FTPorHIP
1BBE” Oracle, PostGreSQL, MySQL, HZ Standard client

Waarp R66 is Massive a File Transfer Monitor as:

Efficient and secured

Adaptation to functional needs

Integration within IT (SNMP compatible)

Strong Administration and Production tools

History of transfers, tracked events

Independent of Server Platforms

Totally Open Source

Usable with different kinds of Database, centralized or distributed
Integration within Waarp file transfer gateway (translating from HTTP/FTP to R66)
o FTP is available through Waarp Gateway FTP Exec

o FTP Client is enabled through Tasks

o HTTP could be made available through explicit specifications in order to provide
an adaptation since it is more business dependant

Integration within an application through extra Java Classes, both on client and
server side, allowing Application 2 Application model

This Software has the following properties:

Full Java, so platform independent (tested under Windows, Linux, AlX)
Allows to manage up to 2”64 simultaneous transfers

Uses a database (JDBC: H2, MySQL or Oracle or PostGreSQL indifferently) to
retain configuration and log of transfer but is not required for clients to be functional

Allows the sending and the reception (in Push or Pull mode) between two identified
partners

The transfer is protected (controlled optionally by MDS or SHA1 or others, with
restart of transfer, SSL support)

Allows the execution of pre operation (before transfer) or of post operation (after
transfer) or error operation (after an error occurs)

Multiplexing of network connections between two servers (firewall compliant)
Proxy/Reverse Proxy for R66 protocol (for DMZ)

KeepAlive internal and TimeOut control

Control on Bandwidth, CPU, simultaneous transfer limitation usage
Functions of control and statistics, traces for all transfer operations

Web support for monitoring production

SNMP compatible as Agent both in pull or notification mode with SNMP V2 and V3
compatibility

Usual client submitted transfer through database as asynchronous operation

Synchronous client which directly manages its transfer, using however the database
as control

Synchronous thin client which does not used the database at all (useful for instance
for light client on personal computer and not server in production) - those clients are
not listening to incoming transfer requests but can only initiates transfers (in push or

pull)

m START | TRAanSFERS | HOSTs | RuULEs | sysTEm | Locow

Logon

“ou need to login to access to the OpenR 66 Administratar,

Username: [t

FPassword: |esssss Logan |

| Terming |

Download

The source and binary (precompiled jar), as well as the current documentation, can be
found at:

http://waarp.qithub.io/Waarp/index.html

Various packages exist:
Packages

Waarp Digest

Waarp Common

Waarp Exec

Waarp Snmp
Waarp XmlEditor

Waarp Password Gui

Waarp R66

Waarp Proxy R66

Waarp R66 Client GUI

Waarp FTP

Waarp Gateway Kernel (R66 linked)

Waarp Gateway FTP (R66 linked)

Waarp Thrift (R66 linked)

Waarp FTP Client (Gateway and R66 linked)
Waarp WaarpAdministrator (R66 linked)

(ol lol ool ololololslalalsls

http://waarp.github.com/WaarpAdministrator
http://waarp.github.com/WaarpFtpClient
http://waarp.github.com/WaarpThrift
http://waarp.github.com/WaarpGatewayFtp
http://waarp.github.com/WaarpGatewayKernel
http://waarp.github.com/WaarpFtp
http://waarp.github.com/WaarpR66Gui
http://waarp.github.com/WaarpProxyR66
http://waarp.github.com/WaarpR66
http://waarp.github.com/WaarpPassword
http://waarp.github.com/WaarpXmlEditor
http://waarp.github.com/WaarpSnmp
http://waarp.github.com/WaarpExec
http://waarp.github.com/WaarpCommon
http://waarp.github.com/WaarpDigest
http://waarp.github.io/Waarp/index.html
https://www.github.com/waarp/WaarpDigest
https://www.github.com/waarp/WaarpCommon
https://www.github.com/waarp/WaarpExec
https://www.github.com/waarp/WaarpSnmp
https://www.github.com/waarp/WaarpXmlEditor
https://www.github.com/waarp/WaarpPassword
https://www.github.com/waarp/WaarpR66
https://www.github.com/waarp/WaarpProxyR66
https://www.github.com/waarp/WaarpR66Gui
https://www.github.com/waarp/WaarpFtp
https://www.github.com/waarp/WaarpGatewayKernel
https://www.github.com/waarp/WaarpGatewayFtp
https://www.github.com/waarp/WaarpThrift
https://www.github.com/waarp/WaarpFtpClient
https://www.github.com/waarp/WaarpAdministrator

Presentation of Waarp R66: Massive File Transfer Monitor

Efficient and secured

Unlimited concurrent number of transfer

Possibility to limit the bandwidth (in point 2 point or globally)

Possibility to limit the CPU usage and the simultaneous number of transfers
Guaranty of delivery (persistence through database and retry)

Virtualization of access paths

Track of meta-data associated with transfers

Encrypted connection support (SSL) with optional strong authentication and Packet
Integrity support

Easy integration in security rules (low number of chosen ports, flow multiplexing)

Partner authentication (through encrypted password and optionally through strong
SSL Client Authentication)

Rules validation of usage by partner

Possibility to have multiple OpenR66 File Transfer Monitors acting as a single one
behind a Load Balancer to enable more reliability and scalability

Possibility to setup a Proxy/Reverse Proxy for DMZ implantation

Possibility to create specific users with limited access to the HTTPS Web
administration

Adaptation to functional needs

Support of internationalization (i18n, currently en and fr)
Log level could be changed dynamically from the Administration interface

One partner could be blocked, such that no transfer or request will be allowed from
this partner.

One partner could be defined as proxified, such that IP is not checked for this
partner.

Initiator of transfer in different modes SEND or RECV through Rules

Pre and Post Actions according to transfer Rules associated with each transfer
Integration through script

Integration through submission client in Java

Integration through interaction with the database of Waarp R66

Integration through a Graphical User Interface (Light Client only)

J g \ ,
\ J
LN
—.
-

Integration through native Java code (business code) either through
BusinessFactory or through R66Runnable

This model allows the implementation of Application 2 Application MFT

Spooling directory capability (automatic sending files when placing them in specific
directories)

Transmit in synchronous or asynchronous mode
o "Query and Forget"
o "Wiait for the end of the transmission"

[8 '
0 0]

3
SEND [SEND+MDS SEND [SEMD+MD5 } L0G TRANSFER RENAME DELETE

THROUGH THROUGH

: RECV RECY+MDS
REC) el VALID
L [RECYsNDb THROUGH [THROUGH l L FILEPATH Py Exte

Request Pre Step Actions

i B
0
LOG TRANSFER RENAME DELETE
e EndTransfer —)O
Oton _— o . ;

o AN con pac

\ J
Post Step Actions

Pre and Post transfer procedures

Native operations

o L0G: Write in the log file the given information

o RENAME: Rename the file

o MOVE: Move the file

o VALIDFILEPATH: Valid the constructed file path

o DELETE: Delete the file

o CoPY: Copy the file

o TRANSFER: Transfer again the file to another OpenR66 server

o RESCHEDULE: Reschedule Transfer task if the error code is one of the specified
codes and if the new schedule is valid

@)

@)

TAR/ZIP: To tar or zip according to arguments

TRANSCODE: ability to transcode from one Charset to another one (as [ISO-
8859-15 to IBM01147)

SNMP: ability to send a trap/info from task execution

FTP: ability to use synchronous transfer in tasks

External operations

o

EXEC (or EXEC RENAME): Execute an external procedure (system call) on the
basis of args given or constructed (and rename the file according to the result of
the command)

EXECOUTPUT: Execute an external procedure (system call) on the basis of args
given or constructed but in case of error, it uses the output to setup information
status using

<STATUS>status</STATUS><ERROR>error message</ERROR>

EXECJAVA: Execute an external procedure (Java Class implementing
R66Runnable) on the basis of args given or constructed

Integration, Administration and Production

Easily integrated into Security rules

Easily integrated into a production plan

Easily integrated into a supervision tool (HTTP/SNMP)

Allow to block any new request, such that shutdown could be started once all active
requests are over.

Allow to handle the configuration in a central point

Allow to handler the history of the transfers in a central point

o

@)

@)

In push or pull mode to or from the central server point
Updated at the desired rhythm
No lock of the OpenR66 monitors in case the central server is unavailable

Deployment of Hosts & Rules & Configuration
Centralization of Transfer's History or Configuration

R66 Central

Fa-Fa - e

1) Install Software (package) 2) Use default Rules & Hosts configuration (done in package) 3) Refresh the configuration
to refresh the configuration from Central R66 Server Use 2) and 3) to download or upload configuration

211
T

-
Authantication through default or new Host ! ,.
Rule to download centralized configuration —

* HTTPS native interface for the administration with access control
* Allow the administration through script
o For instance, allow to modify the bandwidth dynamically
* SNMP support as Agent (MIB included) in SNMP V2 or SNMP V3
o Pull mode (from Monitoring software)
o Push mode (notification as trap or inform)
* HTTP native interface for the supervision

Integration in IT Supervision Process

.‘Irl'tp:.-‘.r‘ RG66:HTTP-port/status @l
200 : OK < L

409 : CONFLICT {need attention)

BlY

History of transfers
» All transfers are tracked into the database
* The database data can be exported into XML format

Independence with server platforms
* Full Java (minimum JDE 6)
» Tested on Windows, Linux, AIX

o Some clients report that it runs also under Solaris and ZSeries

* Solution totally Open Source

Usage mode

«— R66 Protocol (both initiators) —— R66 Monitor File Transfer Server ‘if I Rresli ght Client
—» R66 Protocol (1 initiator) =E5 {(no database)
————Jp» HTTP or FTP Protocol ~ | GoldenGate Gateway e | R66 Heawy Client
R66 FTP HTTP =j (light database)
|JDEC Protocol (R66)
~ -, Database through |DBC o FTPorHITe
Oracle, PostGreSQL, MySQL, H2 = Standard client

* Server (R66) ﬂil

o To have all the functionality

o Possibility to setup a cluster using a loadbalancer in front and sharing some
filesystems and the database

-Rﬁ?
ALHEC
« Heavy Client (R66 HC) g’

o Limited to self-initiated transfers

.Rﬁﬁ'
J L L
* Light Client (R66 LC) ==

o Limited to self-initiated transfers, do not have any database for history (except in
log files) neither restart capability

Partners: who are they?
In R66, there are 2 kinds of partners: client and server.

* A client can request a transfer (in send or recv), but it cannot be the target of a
request since it is supposed to be inactive while not requesting a transfer.

o A Light Client is a real client with no database at all. It can however manage to
store the "past" in XML log files for each transfer.

o A Heavy Client is a client with a database support. It can be used as a server if
wanted, or only as a Client, meaning inactive while no request is initiated by
itself.

* Aserver can request a transfer and can be the target of a request.

In R66, once the request is started, there are 2 roles: requester and requested.
* Arequester is the one that initiate the request. It could be a client or a server.

* Arequested is the one that receives a new request from a requester. It could only
be a server.

The requester is responsible for the request, since it initiates it. It means that it is the only
one that could initiate a restart of this request in case of failure. The main reason is that
the request of transfer is generally related to a condition on the requester side. However a
requested host could try to request the requester to resend its request. At the time being, it
can only be done through the web admin interface.

In R66, once the request is running, there are 2 actors: sender and receiver.
* Asender is the one that will send the file.
* Areceiver is the one that will receive the file.

Considering a rule, sender and receiver will match accordingly the requester and
requested:

* SEND mode rule: requester = sender and requested = receiver

* RECV mode rule: requester = receiver and requester = sender

This has to be understood correctly when creating the rule, and in particular to understand
which part of the “send” or “recv’ tasks will be executed by one or the other of the 2
partners involved in the transfer.

How to operate R66 transfers

Below is presented the different way to operate R66 transfers.

Tran;ferE O . O
FTP/HTTP Transfert]
GoldenGate FTP/HTTP Requé OpenR66 OpenR66
—_— quéte
Uti|iiatElﬂ‘9"
Gu |
N —

* |In Batch mode

o A script is executed which submits a query of transfer (synchronous or
asynchronous)

* In User mode through the Graphical Interface (GUI)
o The transfer request is executed immediately and synchronously
* In APl mode

o Used by Waarp Gateway ﬁ to forward an FTP or HTTP transfer into R66
mode up to its final destination

= Waarp can be used to generate another action than transfer again in post
reception task

o Can be used to instrument one application to use R66 as file transfer natively
(Application 2 Application model)

Usable with many kind of Databases(centralized or distributed)

| d |oac

» Tested with several databases through JDBC [-I.B_BE:]: Oracle, PostGreSQL, MySQL,
H2 (for a low footprint on a PC)

» Database schema is sharable between several OpenR66 servers within one Data
Center

* In case of a set of Servers acting as a Single One, they do share the same ID and
Database and Storage

* Possibility to not rely on any database, but then some functionality will be off (like
extended monitoring or the ability to restart transfer in error, except through XML file
analysis - if active -)

Some basic definitions and understanding

Often one asks what are requests and tasks and how they are executed.

What is client/server/heavy client

First, you must understand that 2 types of partners exist: client and server.
1. Aclient

A client can only be the source of a request (whatever the way, push or pull,
send or recv). It cannot be the target of a request. This could be compared to
a FTP client which can only initiate a connection, but cannot be the target of
a new connection (a part from internal FTP protocol for Data between
Passive or Active mode for instance).

2. Aserver

A server can ask for new request (initiating a connection) or can be the target
of a new request. However, contrary to a FTP server, it can initiate itself a
request.

3. An heavy client

An heavy client is like a client but with a "light" database, meaning that all its
logs and management will be in the light database (H2 Database in Java).
Note that this mode could be extended to a Server mode, using this
database, as for "light" server.

Who is the requester/requested

For a request, we have two kinds of partners:
1. the requester
2. the requested

When a request is initiated, the initiator (named requester) will try to connect to the
requested (target). It tries 3 times with waiting time between, until it reaches the
target. If the connection is not ok, then after 3 tries, the request is in error. We will
see later on what happens then.

If the initiator is a client, the request can only be restarted from the client, since it
cannot be the target of a new request (the client is not listening to any new request).
That's the main reason why a stopped request can be restarted from initiator only.
However, in some conditions, R66 protocol will try to restart a request even from the
target, if the initiator is not a client and if it can in fact send a request of restart to
this remote original requester partner.

Another reason for the requester to be the root of a restart in case of error, is that
most of the time, this is where the request could have much more meanings, either
in term of tasks to execute or in term of file preparation or responsibility.

What are rule types
Any request can be in SEND or RECV mode (push or pull).
This are the main drivers to know which tasks will be executed by who.

Once the request is initiated and both partners ok to do so, the sender (could be
different than the requester) will execute Send tasks, while the other one will
execute the Recv tasks. For a specific rule, if the rule is defined as a SEND mode,
the requester will be the sender, while in the opposite if the rule is defined as a
RECV mode, the requester will be the receiver.

Examples:

* Host A = requester of a request using a rule SEND

* Host B = requested for the same request (defined also as SEND mode)
The rule will be defined in both partners as follow:

* Mode = SEND

* Recv tasks (pre/post/error) => will be executed by Host B

» Send tasks (pre/post/error) => will be executed by Host A
The opposite rule in RECV mode will be as follow:

* Mode = RECV

* Recv tasks (pre/post/error) => will be executed by Host A

» Send tasks (pre/post/error) => will be executed by Host B

The independence of the configuration for server A and server B ensure that locally
the rules are defined according the local needs. Note however that if the 2 servers
share the same database for their respective configuration, they will share also the
rule definitions and therefore the task definitions.

Using the local configuration information (local to each partner), as the directory
configuration, the local resolution of variables (as host name, file name, ID, ...), itis
therefore possible to share the very same rule definitions with several partners,
while they will act differently locally. For instance, both partners could reference the
very same name of external script, but those scripts will be different and adapted to
the local context and therefore acting differently.

What happens with the task

Once the role of each partner is determine (sender or receiver), the tasks will be
executed as follow:

1. Pre tasks on requested side
Pre tasks on requester side
File transfer

Post tasks on receiver side

a kD

Post tasks on sender side

In case of error, whatever the side, the error message is sent back to the partner
and both sides execute the Error tasks.

What are the synchronous/asynchronous mode
Two modes are available:

* Synchronous: the requester will wait until the end of the transfer to finish the
request operation

* Asynchronous: the requester will just submit the request and forget it. It could
check later on the result or using tasks to be informed back on the result on
the request.

For the asynchronous mode, the command line SubmitTransfer has to be used.

For the synchronous mode (or to come back to a synchronous operation once
launched using asynchronous mode):

* Command: DirectTransfer
* SubmirTransfer + RequestTransfer
* SubmitTransfer + post operations to call back the caller of SubmitTransfer

What are the various usages of folders

* Work: the directory where the temporary received file will be located (_can be
specified per Rule)

* In: the directory where the received files will be placed once fully received
(and before any post TASK) (_can be specified per Rule)

« Out: the directory where the to be sent files could be placed (before any pre
TASK) if the path is relative (the out file can be specified with a full path, then
ignoring the "Out" directory) (_can be specified per Rule)

» Arch: the directory where the archived files will be placed (for instance log or
configuration export) (_can be specified per Rule)

« Conf: the directory where the configuration files for no-database client/server

Installation

The primary installation of a server is done using the following steps:

1.
2.

Download the "All Jars Waarp R66" package from Downloads page

Create the XML configuration files (Server, Limit, Rule, Authent, SNMP). The
minimal configuration is Server and Authent (eventually limited to the created
server). An example of various configuration files can be found in the "Waarp R66
Configuration example" package. This package is an example and MUST be
adapted to your needs. You can also have a look to the page Waarp R66-Options,
which explains some specific options.

Create the necessary GGP (GoldenGate Password files) using the des Key
generated both by Waarp Password

. Create the necessary SSL KeyStore for the HTTPS Administration interface and

another one for the SSL server authentication (server only, or server AND client,
depending on your choices)

Create the database (dependent on the one choose between Oracle, PostgreSql,
MySQL/MariaDB or H2 database, the initial creation is out of this documentation).
We strongly recommend to use either PostgreSql or H2 Database, since MySQL
and MariaDB show some issues on client side using JDBC in multithreading case.

Adapt the example scripts that helps to launch the Waarp commands and services
(in example/ then according to your OS: Linux, Unix, Windows). In particular for
Linux and Unix, the file ENV_R66 shall be adapted to your installation, while for
Windows, it is the setvari.bat. Note also that for Services (Waarp R66 or Waarp
SpooledDirectory service), one should adapt the files found in /example/service
(Waarp R66) and /example/servicespooled (SpooledDirectory).

. Initialize the database (once created and the user/password and the JDBC access

fill in the Server configuration XML file)

Create the logback.xml file according to your need (to setup for instance the level of
trace from DEBUG to WARN). See the logback.xml example or the LogBack web
site.

Now you can run the server and use the various commands or Administration
interface to continue the configuration (Limit, Rule, Authent). Note that some
specific options can be passed when launching the commands (see at the end the
"-Dopenr66.*" options).

10.Note that commands can also have a special extra argument: the output format as

one of

o -csv : output will be as one line for the title, one line for the data, all fields
separated by ;'

o -property : output will be one value per line, as name=value
o -xml : output will be in XML format

o -json : output will be in JSON format (default)

o -quiet : no output will be done (only logging)

Below those several steps are illustrated.

Note that the various tools are consolidated into one named: Central Administrator (Xml
Editor, Password, R66Gui) plus some other functions.

XML Configuration

To configure a Waarp R66 Server, you need to first create the XML files as needed (see
the Xml Config files page): main config file, authent file, rules and limit config files.

A specific package contains default example configuration files. This package is named
“Waarp R66 configuration example” and can be found here:

https://raw.github.com/waarp/\WaarpMaven2/master/AllJars/\WaarpR66-example-config.zip

A definition of those XML files can be found in XML configuration.

To help the administrator to generate correct files, XSD models are defined to be used with
an extension of the project Xample (XML Gui Editor) from Felix Golubov, see Waarp Xml
Editor.

http://www.felixgolubov.com/XMLEditor/
https://raw.github.com/waarp/WaarpMaven2/master/AllJars/WaarpR66-example-config.zip

| CAYUTS, WOl aUA, IS

| £ XAmple-GG - OpenRBbxsd : config-serverAoml
File Look & Feel Help

 [Ebleat) b 8| o |
i | Edit¥ML document
AML Golden@ate Editor: F Golubow & F Bregier 2040 -
I EYS config
& comment Example of config file: change its as your need.
[] 1B identity hestid="hosta"
@? hostid hosta
@? sslhostid hostas

@? serveradmin monadmin

@? serverpasswd |y fSHZzfPNRo=

G authentfile [+ D:\GE\R 66 \conf\OpenR 66-authent-A.xml |
ES network

& serverport 6666

@? serversslport 5557

| sl

@? serverhttpport 3055
& serverhttpsport 3057 | |

[71 &5 ssl

Sequence Group

& keypath [t o \GE\R a6 certs\testssinocert. ks |
(# keystorepass testssinocert

¥ML Configuration Document:
D:\GE\RE66 \ conficonfig-serverl.xml

Falder:

It is also possible to use JAXE with jaxe-xxx-config.xml files.

Password configuration

For the administrator you need a specific DES Key for the encrypted password support.
DES encryption support and generation are available through the GoldenGate Password
GUI project.

http://jaxe.sourceforge.net/en/

. -

[£:| GoldenGate Password GUI

File Password Help

CAGGIRGE\cers test-key. des

DAGGIRGE\certstest-passwd.gap

a5847a6ebb2eb5230554eb160326e70 1893 e ach¥ 14f52fch

Note that under Mainframe, some people reports that adding -Dfile.encoding=UTF8
fixes some issues with passwords.

See Waap Password Tool

Cryptography

For the administrator you need a KeyStore containing a RSA key for SSL support in
HTTPS.

You need another KeyStore for the SSL support in the Waarp R66 protocol, but only if you
want to use this SSL channel.

If you don't want that OpenR66 uses SSL between two hosts, then you only need one
KeyStore for the HTTPS support.

In the source, you will find in the certs directory 2 such keystore named admin66.store and
openr66.store. You can named the files as you wanted (using the standard "jks" extension
for instance).

To generate those files, you can also ue the keytool command from the jdk, or using the
cool free tool KeyTool Ul (last known version in 2.4.1).

* keypath for OpenR66 channels (admkeypath for administrator) is the full or
relative path to the keystore file

* keystorepass (admkeystorepass) is the password for the keystore
* keypass (admkeypass) is the password for the key
For instance:

keytool -genkey -alias myalias -keyalg RSA -validity xxx -keystore mystore.store

Below you will find the full detail on how to create those KeyStore and TrustedKeyStore
according to your needs:

To generate the stores for Waarp R66 for instance, you need to create 2 JKS keyStore. To
generate those files, you can use the "keytool" command from the JDK or using the free
tool KeyTool IUI (last known version in 2.4.1). Below we show how to use the Keytool IUI.

For SSL connection without authentication of clients
« Server side (also valid for Administration HTTPS site)

o Create one jks KeyStore (server.jks) with one Private Key Version 3 using RSA
algorithm.

o Use this KeyStore as KeyStore for the Server.
o To do that, suing KeyTool IUI:
1. Create an empty KeyStore
2. Create a Private Key Version 3 with RSA algorithm added to this KeyStore
* Client side

o Create one jks TrustStore (clientTrust.jks) with the Certificate Chain of the
Server Key from the Server as a Regular Certificate.

o Use this KeyStore as Trustore for the Client.
o To do that, using KeyTool IUI:

1. From the Server Keytore, export Private Key (2 files with one Certificate
Chain)

2. Create one jks TrustStore (Empty KeyStore)
3. Import the Trusted Certificate as Regular Certificate (Certificate Chain as .der
file)

For SSL connection with authentication of clients

 First do as without authentication of clients for the server authentication side:
server.jks for the Server's KeyStore and clientTrust.jks for the Client's TrustStore.

* Handle the reverse authentication of multiples clients within the server
o Client side

= Create one jks KeyStore with one Private Key Version 3 using RSA algorithm
for each Client (client1.jks, client2.jks, clientn.jks).

= Use this KeyStore as KeyStore for the Client.
= To do that, using KeyTool IUlI:
1. Create an empty KeyStore

2. Create a Private Key Version 3 with RSA algorithm added to this
KeyStore

o Server side

= Create one jks TrustStore (serverTrust.jks) with the Certificate Chain of the
Client Key from the Client as a Regular Certificate.

= Use this KeyStore as Trustore for the Server.

= To do that, using KeyTool IUI:

1.
2.

Create one jks TrustStore (Empty KeyStore)

From the Client Keytore, export Private Key (2 files with one Certificate
Chain)

Import the Trusted Certificate as Regular Certificate (Certificate Chain
as .der file)

Import all Trusted Certificates as with 2 and 3 in the same TrustStore

Then you have to fill the ports to use (serverssl port for Waarp R66 channels,
serverhttpsport for the administrator) and to set up the good path to every components
(don't forget the path to the html admin files, between admin or admin2 - the second being
more dynamic -).

Database configuration

Then, you create a database entry in the model you choose (currently supported is Oracle,
PostGreSQL, MySQL and H2 Database). This database entry should be referenced in the
XML config files. Below is presented the schema of the database that will be created.

' ™y
0 = 0
= IE == = EE E
EACSESSIONLMIT URDATEBINGG HEATID 5T MODETR RFRETASIS SPRETASKS u R IDRULE
LCBALLMIT F-\:u--.tn.urt- 8 E _w_,_E
CONFIGURATION
') 3 -.y-:,g-‘nlr_z
0 2%KS | | sem
E|E |E '
rosTiEY omeou D00 l HosT
WORKPATH
FORT L — v
—— RULES
' ™\
‘ ' | !
—— 5 = EREVEN0E { AmR ' [™ ’ J
~ T S A | MODE: L L L
— O| T UPDATEDINFO: | » 0= UNKNOWN # . / Ve
COUNTCONFIG HOSTD 3 0= UNKNOYIN t 1=SEND BALLASTSTE - - e - sosrzowen |!| szques ¥
F » 1=NOTUPDATED | » 2=RECV it N
r 2=INTERRUPTED | » 3=5ENDMDS \ \ 4
» 3=TOSUBMIT » 4=RECVMDS r —
; L 4=INERROR 5= SENDTHROUGH e e i "'
CUMHRE E 5= RUNNING E 6= RECVTHROUGH |
: 6=DONE 7=5ENDMDATHROUGH . e m——
‘_ » 8 =RECVMDATHROUGH ."_'.‘
ik ?h_efor Lockin GMMA\S__“__“:_ STEP: | [
_ ; Multiple = 0=NOTASK
L J " Moritors = 1=PRETASK
MULTIPLEMONITOR implementation : g:%&:’#gﬁ‘rl&(RUNNER
= 4=ALIDONETASK
» 5=ERRORTASK

You need to get all the necessary jar (see the dependencies of the project) to allow you to
launch the server. An example of shell script including all jar is presented in the
src/main/example directory.

Then you launch the ServerlnitDatabase (see the details in ServerlnitDatabase).

Mainly, one has to create the database (-initdb), and to provide various elements to fill
the database (-loadBusiness, -loadAlias, -loadRoles, -dir, -auth,
-1imit) or using the upgrade procedure if the database already exists from a previous
version (from 2.4.17) using —upgradeDb option.

Note that multiple Waarp R66 Servers may shared the exactly same database. Waarp R66
is compatible with such a model. Note however that Rules are strictly shared, which
means that you will need to take care of the absolute path of EXEC commands such that
they are valid on all Waarp R66 servers where it should be executed.

Logging

Example of logback.xml file that provides both logging to a file (R66Server.log) and to
stdout, with an historic on 30 items in zip format, with a limit of 1 per day or 10MB each.

<configuration>

<appender name="FILE"

class="ch.qgos.logback.core.rolling.RollingFileAppender">

<file>/GG/R66/1log/R66Server.log</file>

<append>true</append>

<rollingPolicy class="ch.qgos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>/GG/R66/log/R66Server.sd{yyyy-MM-dd} .

%i.log.zip</fileNamePattern>

<maxHistory>30</maxHistory>
<timeBasedFileNamingAndTriggeringPolicy

class="ch.gos.logback.core.rolling.SizeAndTimeBasedFNATP">

<maxFileSize>10MB</maxFileSize>
</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>

<encoder class="ch.qgos.logback.classic.encoder.PatternLayoutEncoder">
<pattern>
$date{dd/MM/yyyy/HH: mm: ss.SSS} %$level [$logger] [%$thread] %msg%n
</pattern>
</encoder>

</appender>

<appender name="STDOUT"

class="ch.qgos.logback.core.ConsoleAppender">
<encoder class="ch.qgos.logback.classic.encoder.PatternLayoutEncoder">
<Pattern>%date{dd/MM/yyyy/HH: mm: ss.SSS} %level [%logger] [%thread] %msg

%$n</Pattern>

</encoder>

</appender>

<root>

<level value="warn" />
<appender-ref ref="FILE" />
<appender-ref ref="STDOUT" />

</root>
</configuration>
And use the -Dlogback.configurationFile=J:/GG/R66/conf/logback.xml as

argument to the java command (before the class to launch, roughly were you put the -Xms
-Xmx arguments).

Extra Waarp JVM Options

Moreover, several options can be placed in the command line (preferably in ENV_R66 or
setvari.bat):

-Dopenr66.locale=en|fr to choose between english or french default language (note:
not all elements are translated, only the more relevant)

-Dopenr66.ishostproxyfied=1|0 to set that this host is proxyfied (using R66Proxy),
such that eventual IP check will not apply to it (since the IP will be the one from the
proxy)

-Dopenr66.startup.warning=1|0 to choose if warning at startup should be printed or
not (useful for client where those warning are not real issues but information)

» -Dopenr66.startup.checkdb=1|0 to choose if database configuration shall be
checked at startup (default is true)

* -Dopenr66.chroot.checked=1|0 to choose if all rules will have to be respected in
terms of chroot. For instance, trying to get a file (RECV) from a remote partner,
while specifying a full path might be allowed, even if outside OUT directory, except if
checked=1. Then all files must be under (immediately or in subdirectories) the OUT
directory.

* -Dopenr66.blacklist.badauthent=1|0 to choose if a server that will have a bad
authentification will be put as black listed (no more allowed for a while), to prevent
DOS. if OPENR66_ISHOSTPROXYFIED is true, then is mandatory false). Note that
this must not be true if several partners might have the same IP (proxyfied for
instance), since they will all be banned

* -Dopenr66.flename.maxlength=n (default n = 255) to choose the default max
filename length used when receiving a file (for the temporary filename and final
flename). This does not prevent to change the filename after (and
#ORIGINALFILENAME# does still contain the full filename, untroncated).

» -Dopenr66.trace.stats=n (default n=0) to debug by making a trace of some specific
data structure usages every n s, where n is specify as value in the definition. If O or
less, means not activated.

* -Dopenr66.cache.limit=n and -Dopenr66.cache.timelimit=m (default n=20000,
m=180000 - 180s -) to manage the cache behavior of Transfer informations with

© n being the maximum number of DbTaskRunners to keep in LRU cache (used in
self request and for instance without database) - Minimal value is 100 -

© m being the maximum time in ms of valid element once created, used or
updated (used in self request and for instance without database). - Minimal
value is 1000 ms (1s). If set to 1000, the value will not be regularly cleaned of
outtimed values but the cache will be filled up to n. -

Now you can launch the Waarp R66 Server.

Note that you can add specific user rights with specific authentication to access to the Web
administrator interface from version 2.4.22 (see here), in addition to the super user
specified in the XML configuration file of the server.

XML configuration

Every command require an XML configuration file as first argument. This file contains
some information that are really relative to the host. Those informations are described
shortly in the following pages.

For all those configuration files, there are 2 kind of helpers, that can be found in xample
directory under src/main/xample or in Waarp R66 configuration example zip file under
xample directory:

* OpenR66-XXX.xsd : XML schema that could be used with any particular XML
Schema compatible editor, and in particular the Waarp Xml Editor

* jaxe-OpenR66-XXX.xml : an equivalent of the XML schema that could be used with
Jaxe editor (http://jaxe.sourceforge.net)

http://jaxe.sourceforge.net/

Waarp R66 Server Configuration File

config

comment: string Optional

identity

hostid: nonEmptyString

Host ID in NON SSL mode

sslhostid: nonEmptyString Optional

Host ID in SSL mode

cryptokey: Des-File

Des CryptoKey File containing the key in Des mode for R66 passwords
authentfile: XML-File Optional

Authentication File containing Authentications for partners

server

serveradmin: nonEmptyString

Username for Administrator access

serverpasswd: NonEmptyString or serverpasswdfile: nonEmptyString
Password for Administrator access using Crypto Key (directly or through a ggp file)
usenossl: booleanType default="True"

True (Default) if R66 will allow no SSL mode connection

usessl: booleanType default="False"

True if R66 will allow SSL mode connection

usehttpcomp: booleanType default="False"

True if Administrator (HTTPS) will allow HTTP compression
uselocalexec: booleanType default="False"

By default, use the System.exec() but can lead to limitation in performances (JDK
limitation). The usage of the Waarp LocalExec Daemin tends to reach better
performances through execution delegation

lexecaddr: address default="127.0.0.1" Optional
Address of LocalExec Daemon

lexecport: nonNullnteger default="9999" Optional
Port of LocalExec Daemon

httpadmin: directoryType

Home Directory for HTTPS file support for Administrator
admkeypath: JKS-File

JKS HTTP KeyStore for Administrator Access in HTTPS Mode (containing Server
Certificate)

* admkeystorepass: honEmptyString
Password for the HTTP KeyStore
* admkeypass: nonEmptyString
Password for the HTTP Server Certificate within the HTTP KeyStore
* checkaddress: booleanType default="False" Optional
True if R66 will check remote IP address while accepting a new connection
* checkclientaddress: booleanType default="False" Optional
True if R66 will check remote IP address also for remote Client
* multiplemonitors: nonNullinteger default="1"

Set the number of servers that act in the same group as a single instance of
OpenR66 File Transfer Monitor

network
* serverport: nonNullnteger default="6666"
Port used in NON SSL mode
* serversslport: nonNullnteger Optional default="6667"
Port used in SSL mode
* serverhttpport: nonNullnteger default="8066"
Port used for monitoring in HTTP mode
* serverhttpsport: nonNullnteger default="8067"
Port used for Administrator access in HTTPS mode
ss1 Optional
* keypath: JKS-File
JKS KeyStore for R66 Access in SSL Mode (containing Server Certificate)
* keystorepass: nonEmptyString
Password for the KeyStore
* keypass: nonEmptyString
Password for the Server Certificate within the KeyStore
* trustkeypath: JKS-File

JKS Trust KeyStore for R66 Access in SSL Mode with Client Authentication
(containing Client Certificate)

* trustkeystorepass: nonEmptyString
Password for the Trust KeyStore
* trustuseclientauthenticate: booleanType default="False"

True if R66 will only allow client through SSL authentication
directory

* serverhome: directoryType
Home Directory for the OpenR66 Server (relative path to this Home)

* in: nonEmptyString Optional default="IN"
Default Receive Directory

* out: nonEmptyString Optional default="OUT"
Default Send Directory

* arch: nonEmptyString Optional default="ARCH"
Default Archive Directory

* work: nonEmptyString Optional default="WWORK"
Default Working Directory

* conf: nonEmptyString Optional default="CONF"
Configuration Directory

limit

* serverthread: nonNullnteger default="8" Optional
Number of Threads on Server side (=Number of Cores)

* clientthread: nonNullnteger default="80" Optional
Number of Threads on Client side (=10xServer)

* memorylimit: nonNullnteger default="4000000000" Optional
Memory Limit for R66 Server Java Process

* sessionlimit: nonNeglnteger default="8388608" Optional
HBandwidth for one session (64Mb)

* globallimit: nonNeglnteger default="67108864" Optional
Global Bandwidth (512Mb)

* delaylimit: nonNullnteger default="10000" Optional

Delay between 2 checks of Bandwidth (10s). The less this value, the better the
bandwidth limitation is done. However take care to not give too low value

* runlimit: nonNullnteger default="10000" Optional
Limite by batch of active transfers (10000)

* delaycommand: nonNullnteger default="5000" Optional
Delay between 2 execution of the Commander (5s)

* delayretry: nonNullnteger default="30000" Optional
Delay between 2 attemps in case of error (30s)

* timeoutcon: nonNullnteger default="30000" Optional

Delay before a Time Out occurs (30s)

blocksize: nonNullnteger default="65536" Optional

Block size (64Ko). A value between 8 KB to 16 MB is recommanded
gaprestart: nonNullnteger default="30" Optional

Gap to use when restarting a transfer as gap x blocksize

usenio: booleanType default="False" Optional

Usage of NIO support for the files. According to the JDK, it can enhance the
performances

usecpulimit: booleanType default="False" Optional
Usage of CPU Limitation when new request starts
usejdkcpulimit: booleanType default="False" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

cpulimit: decimalType default="0.0" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

connlimit: nonNeglnteger default="0" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

digest: integerNotNegative default=0 (to setup a different Digest than MD5
globally)

usefastmd5: booleanType default="True"

Usage of FastMD5 library. The library greatly improves the performances for the
MD5 computations

fastmd5: SODLL-File Optional
Library JNI Filepath. If the path is empty, the pure Java version will be used
checkversion: booleanType Optional default="False"

If True, it will enable extended protocol (>= 2.3) to enable some extra information
getting back at end of transfers

globaldigest: : booleanType Optional default="True"
If True, it will enable a global digest (MD5, SHAA1, ...) per file per transfer

dbdriver: address
4 types of database are currently supported: oracle, mysq|, postgresql, h2
dbserver: normString

Connection to the database in JDBC mode (jdbc: type://[host: port]....). Use the
database documentation to find the correct syntax for the JDBC connection

* dbuser: address
Database User
* dbpasswd: honEmptyString
Database User's Password
¢ dbcheck: boolean
Database check activation at startup (default True)
* taskrunnernodb: booleanType Optional default="False"

When server with no DB, do R66 will use XML files as permanent information on
Transfer Tasks

business
* businessid: nonEmptyString
the host ids (1 by 1) that will be allow to use Business Request (>= 2.3)
* roles

© role

If specified for one host, this will override database roles for ALL hosts (from version
2.4.9). By default, local server should be added as role = FULLADMIN.

= roleid: nonEmptyString
The host ids (1 by 1) that will override database roles
= roleset: nonEmptyString with separators as blank or'|'

The role assign to this host between NOACCESS, READONLY, TRANSFER,
RULE, HOST, LIMIT, SYSTEM, LOGCONTROL, PARTNER(READONLY,
TRANSFER), CONFIGADMIN(PARTNER, RULE, HOST),
FULLADMIN(CONFIGADMIN, LIMIT, SYSTEM, LOGCONTROL)

aliases
* alias
This will allow alias usage for host ids (from version 2.4.12).
°© realid: nonEmptyString
The real host id that will have aliases (locally)
o aliasid: nonEmptyString with separators as blank or'|'

The set of aliases assign to this host

Example:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns: x0="http://www.w3.0rg/2001/XMLSchema">
<comment>Example of config file: change its as your need.</comment>
<identity>
<hostid>hosta</hostid>
<sslhostid>hostas</sslhostid>

<cryptokey>D:\GG\R66\certs\test-key.des</cryptokey>
<authentfile>D:\GG\R66\conf\OpenR66-authent-A.xml</authentfile>

</identity>

<server>
<serveradmin>monadmin</serveradmin>
<serverpasswd>c5f4876737cf351a</serverpasswd>
<usenossl>True</usenossl>
<usessl>False</usessl>
<usehttpcomp>False</usehttpcomp>
<uselocalexec>False</uselocalexec>
<httpadmin>D:\NEWSOURCE\WaarpR66\src\main\admin</httpadmin>
<admkeypath>D:\GG\R66\certs\testsslnocert.jks</admkeypath>
<admkeystorepass>testsslnocert</admkeystorepass>
<admkeypass>testalias</admkeypass>
<checkaddress>False</checkaddress>
<checkclientaddress>False</checkclientaddress>

</server>

<network>
<serverport>6666</serverport>
<serversslport>6667</serversslport>
<serverhttpport>8066</serverhttpport>
<serverhttpsport>8067</serverhttpsport>

</network>

<ssl>
<keypath>D:\GG\R66\certs\testsslnocert.jks</keypath>
<keystorepass>testsslnocert</keystorepass>
<keypass>testalias</keypass>
<trustkeypath>D:\GG\R66\certs\testcert.jks</trustkeypath>
<trustkeystorepass>testcert</trustkeystorepass>
<trustuseclientauthenticate>True</trustuseclientauthenticate>

</ssl>

<directory>
<serverhome>d:/GG/R66</serverhome>
<in>in</in>
<out>out</out>
<arch>arch</arch>
<work>work</work>
<conf>conf</conf>

</directory>

<limit>
<usefastmd5>True</usefastmd5>
<fastmd5>D: \NEWJARS\gglib\win32\MD5.d11</fastmd5>
<delayretry>10000</delayretry>
<timeoutcon>10000</timeoutcon>
<serverthread>8</serverthread>
<clientthread>80</clientthread>
<memorylimit>4000000000</memorylimit>
<sessionlimit>8388608</sessionlimit>
<globallimit>67108864</globallimit>
<delaylimit>10000</delaylimit>
<runlimit>10000</runlimit>
<delaycommand>5000</delaycommand>
<blocksize>65536</blocksize>
<gaprestart>30</gaprestart>
<usenio>False</usenio>
<usecpulimit>False</usecpulimit>
<usejdkcpulimit>False</usejdkcpulimit>
<cpulimit>0.0E1l</cpulimit>
<connlimit>0</connlimit>

</limit>

<db>

<dbdriver>h2</dbdriver>

<dbserver>jdbc: h2:
D:/GG/R66/data/openr66; IFEXISTS=TRUE; MODE=Oracle; AUTO SERVER=TRUE</dbserver>

<dbuser>openr66</dbuser>

<dbpasswd>openr66</dbpasswd>

<dbcheck>true</dbcheck>
</db>
</config>

Waarp R66 Client Configuration File
config
* comment: string Optional
identity
* hostid: nonEmptyString
Host ID in NON SSL mode
* sslhostid: nonEmptyString Optional
Host ID in SSL mode
* cryptokey: Des-File
Des CryptoKey File containing the key in Des mode for R66 passwords
* authentfile: XML-File Optional
Authentication File containing Authentications for partners
client Optional
* taskrunnernodb: booleanType Optional default="False"

When client with no DB, do R66 will use XML files as permanent information on
Transfer Tasks

ss1 Optional
* keypath: JKS-File
JKS KeyStore for R66 Access in SSL Mode (containing Server Certificate)
* keystorepass: nonEmptyString
Password for the KeyStore
* keypass: honEmptyString
Password for the Server Certificate within the KeyStore
* trustkeypath: JKS-File

JKS Trust KeyStore for R66 Access in SSL Mode with Client Authentication
(containing Client Certificate)

* trustkeystorepass: nonEmptyString
Password for the Trust KeyStore
* trustuseclientauthenticate: booleanType default="False"
True if R66 will only allow client through SSL authentication
directory
* serverhome: directoryType
Home Directory for the OpenR66 Server (relative path to this Home)
* in: nonEmptyString Optional default="IN"
Default Receive Directory

* out: nonEmptyString Optional default="OUT"
Default Send Directory

* arch: nonEmptyString Optional default="ARCH"
Default Archive Directory

* work: nonEmptyString Optional default="WORK"
Default Working Directory

* conf: nonEmptyString Optional default="CONF"
Configuration Directory

limit

* serverthread: nonNullnteger default="8" Optional
Number of Threads on Server side (=Number of Cores)

* clientthread: nonNullnteger default="80" Optional
Number of Threads on Client side (=10xServer)

* memorylimit: nonNullnteger default="4000000000" Optional
Memory Limit for R66 Server Java Process

* sessionlimit: nonNeglnteger default="8388608" Optional
HBandwidth for one session (64Mb)

* globallimit: nonNeglnteger default="67108864" Optional
Global Bandwidth (512Mb)

* delaylimit: nonNullnteger default="10000" Optional

Delay between 2 checks of Bandwidth (10s). The less this value, the better the
bandwidth limitation is done. However take care to not give too low value

* runlimit: nonNullnteger default="10000" Optional
Limit by batch of active transfers (10000)

* delaycommand: nonNullnteger default="5000" Optional
Delay between 2 execution of the Commander (5s)

* delayretry: nonNullnteger default="30000" Optional
Delay between 2 attemps in case of error (30s)

* timeoutcon: nonNullnteger default="30000" Optional
Delay before a Time Out occurs (30s)

* Dblocksize: nonNullnteger default="65536" Optional
Block size (64Ko). A value between 8 KB to 16 MB is recommanded

* gaprestart: nonNullnteger default="30" Optional
Gap to use when restarting a transfer as gap x blocksize

* usenio: booleanType default="False" Optional

Usage of NIO support for the files. According to the JDK, it can enhance the
performances

* usecpulimit: booleanType default="False" Optional
Usage of CPU Limitation when new request starts
* usejdkcpulimit: booleanType default="False" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

* cpulimit: decimalType default="0.0" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

* connlimit: nonNeglnteger default="0" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

* digest: integerNotNegative default=0 (to setup a different Digest than MD5
globally)

* usefastmd5: booleanType default="True"

Usage of FastMD5 library. The library greatly improves the performances for the
MD5 computations

* fastmd5: SODLL-File Optional

Library JNI Filepath. If the path is empty, the pure Java version will be used
* checkversion: booleanType Optional default="False"

True to allow the extended protocol on end of request (>= 2.3)
* globaldigest: : booleanType Optional default="True"

If True, it will enable a global digest (MD5, SHAA1, ...) per file per transfer

db Optional

* dbdriver: address

4 types of database are currently supported: oracle, mysql, postgresql, h2
* dbserver: normString

Connection to the database in JDBC mode (jdbc: type://[host: port]....). Use the
database documentation to find the correct syntax for the JDBC connection

* dbuser: address
Database User
* dbpasswd: honEmptyString
Database User's Password
e dbcheck: boolean
Database check activation at startup (default True)

* taskrunnernodb: booleanType Optional default="False"

When client with no DB, do R66 will use XML files as permanent information on
Transfer Tasks

business
* Dbusinessid: nonEmptyString

the host ids (1 by 1) that will be allow to use Business Request (>= 2.3)
aliases

* alias
This will allow alias usage for host ids (from version 2.4.12).
°© realid: nonEmptyString
The real host id that will have aliases (locally)
o aliasid: nonEmptyString with separators as blank or'|'
The set of aliases assign to this host
Example:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns: x0="http://www.w3.0rg/2001/XMLSchema">
<comment>Example of config file: change its as your need.</comment>
<identity>
<hostid>hosta</hostid>
<sslhostid>hostas</sslhostid>
<cryptokey>D:\GG\R66\certs\test-key.des</cryptokey>
<authentfile>D:\GG\R66\conf\OpenR66-authent-A.xml</authentfile>
</identity>
<client>
</client>
<ssl>
<keypath>D:\GG\R66\certs\testsslnocert.jks</keypath>
<keystorepass>testsslnocert</keystorepass>
<keypass>testalias</keypass>
<trustkeypath>D:\GG\R66\certs\testcert.jks</trustkeypath>
<trustkeystorepass>testcert</trustkeystorepass>
<trustuseclientauthenticate>False</trustuseclientauthenticate>
</ssl>
<directory>
<serverhome>d:/GG/R66</serverhome>
<in>in</in>
<out>out</out>
<arch>arch</arch>
<work>work</work>
<conf>conf</conf>
</directory>
<limit>
<usefastmd5>True</usefastmd5>
<fastmd5>D:\NEWJARS\gglib\win32\MD5.d11</fastmd5>
<delayretry>10000</delayretry>
<timeoutcon>10000</timeoutcon>
</limit>
<db>
<dbdriver>h2</dbdriver>
<dbserver>jdbc: h2:
D:/GG/R66/data/openr66; IFEXISTS:TRUE;MODE:OraCle;AUTO_SERVER:TRUE</dbserver>
<dbuser>openr66</dbuser>
<dbpasswd>openr66</dbpasswd>

</db>
</config>

Waarp R66 Client Without Database Configuration File
config
* comment: string Optional
identity
* hostid: nonEmptyString
Host ID in NON SSL mode
* sslhostid: nonEmptyString Optional
Host ID in SSL mode
* cryptokey: Des-File
Des CryptoKey File containing the key in Des mode for R66 passwords
* authentfile: XML-File
Authentication File containing Authentications for partners
client Optional
* taskrunnernodb: booleanType Optional default="False"

When client with no DB, do R66 will use XML files as permanent information on
Transfer Tasks

ss1 Optional
* keypath: JKS-File
JKS KeyStore for R66 Access in SSL Mode (containing Server Certificate)
* keystorepass: nonEmptyString
Password for the KeyStore
* keypass: nonEmptyString
Password for the Server Certificate within the KeyStore
* trustkeypath: JKS-File

JKS Trust KeyStore for R66 Access in SSL Mode with Client Authentication
(containing Client Certificate)

* trustkeystorepass: nonEmptyString
Password for the Trust KeyStore
* trustuseclientauthenticate: booleanType default="False"
True if R66 will only allow client through SSL authentication
directory
* serverhome: directoryType
Home Directory for the OpenR66 Server (relative path to this Home)
* in: nonEmptyString Optional default="IN"
Default Receive Directory

* out: nonEmptyString Optional default="OUT"
Default Send Directory

* arch: nonEmptyString Optional default="ARCH"
Default Archive Directory

* work: nonEmptyString Optional default="WORK"
Default Working Directory

* conf: nonEmptyString Optional default="CONF"
Configuration Directory

limit

* serverthread: nonNullnteger default="8" Optional
Number of Threads on Server side (=Number of Cores)

* clientthread: nonNullnteger default="80" Optional
Number of Threads on Client side (=10xServer)

* memorylimit: nonNullnteger default="4000000000" Optional
Memory Limit for R66 Server Java Process

* sessionlimit: nonNeglnteger default="8388608" Optional
HBandwidth for one session (64Mb)

* globallimit: nonNeglnteger default="67108864" Optional
Global Bandwidth (512Mb)

* delaylimit: nonNullnteger default="10000" Optional

Delay between 2 checks of Bandwidth (10s). The less this value, the better the
bandwidth limitation is done. However take care to not give too low value

* runlimit: nonNullnteger default="10000" Optional
Limite by batch of active transfers (10000)

* delaycommand: nonNullnteger default="5000" Optional
Delay between 2 execution of the Commander (5s)

* delayretry: nonNullnteger default="30000" Optional
Delay between 2 attemps in case of error (30s)

* timeoutcon: nonNullnteger default="30000" Optional
Delay before a Time Out occurs (30s)

* Dblocksize: nonNullnteger default="65536" Optional
Block size (64Ko). A value between 8 KB to 16 MB is recommanded

* gaprestart: nonNullnteger default="30" Optional
Gap to use when restarting a transfer as gap x blocksize

* usenio: booleanType default="False" Optional

Usage of NIO support for the files. According to the JDK, it can enhance the
performances

usecpulimit: booleanType default="False" Optional
Usage of CPU Limitation when new request starts
usejdkcpulimit: booleanType default="False" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

cpulimit: decimalType default="0.0" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

connlimit: nonNeglnteger default="0" Optional

Usage of CPU limitation based on Native JDK support, else (False) on Java
Sysmon library

digest: integerNotNegative default=0 (to setup a different Digest than MD5
globally)

usefastmd5: booleanType default="True"

Usage of FastMD5 library. The library greatly improves the performances for the
MD5 computations

fastmd5: SODLL-File Optional
Library JNI Filepath. If the path is empty, the pure Java version will be used
taskrunnernodb: booleanType Optional default="False"

When client with no DB, do R66 will use XML files as permanent information on
Transfer Tasks

checkversion: booleanType Optional default="False"

True to allow the extended protocol on end of request (>= 2.3)
globaldigest: : booleanType Optional default="True"

If True, it will enable a global digest (MD5, SHAA1, ...) per file per transfer

db Optional

taskrunnernodb: booleanType Optional default="False"

When client with no DB, do R66 will use XML files as permanent information on
Transfer Tasks

business

businessid: nonEmptyString
the host ids (1 by 1) that will be allow to use Business Request (>= 2.3)

aliases

alias

This will allow alias usage for host ids (from version 2.4.12).

realid: nonEmptyString
The real host id that will have aliases (locally)
aliasid: nonEmptyString with separators as blank or'|'

The set of aliases assign to this host

Waarp R66 Client for Submit Only Configuration File
config
* comment: string Optional
identity
* hostid: nonEmptyString
Host ID in NON SSL mode
* sslhostid: nonEmptyString Optional
Host ID in SSL mode
* cryptokey: Des-File
Des CryptoKey File containing the key in Des mode for R66 passwords
directory
* serverhome: directoryType
Home Directory for the OpenR66 Server (relative path to this Home)
* in: nonEmptyString Optional default="IN"
Default Receive Directory
* out: nonEmptyString Optional default="OUT"
Default Send Directory
* arch: nonEmptyString Optional default="ARCH"
Default Archive Directory
* work: nonEmptyString Optional default="WORK"
Default Working Directory
* conf: nonEmptyString Optional default="CONF"
Configuration Directory
limit
* blocksize: nonNullnteger default="65536" Optional
Block size (64Ko). A value between 8 KB to 16 MB is recommanded

* dbdriver: address
4 types of database are currently supported: oracle, mysql, postgresql, h2
* dbserver: normString

Connection to the database in JDBC mode (jdbc: type://[host: port]....). Use the
database documentation to find the correct syntax for the JDBC connection

¢ dbuser: address
Database User
* dbpasswd: honEmptyString

Database User's Password
¢ dbcheck: boolean
Database check activation at startup (default True)
aliases
e alias
This will allow alias usage for host ids (from version 2.4.12).
© realid: nonEmptyString
The real host id that will have aliases (locally)
© aliasid: nonEmptyString with separators as blank or'|

The set of aliases assign to this host

Waarp R66 Limit Configuration File

config
* comment: string Optional
identity
* hostid: nonEmptyString
Host ID in NON SSL mode
limit
* sessionlimit: nonNeglnteger default="8388608" Optional
Bandwidth for one session (64Mb)
* globallimit: nonNeglnteger default="67108864" Optional
Global Bandwidth (512Mb)
* delaylimit: nonNullnteger default="10000" Optional

Delay between 2 checks of Bandwidth (10s). The less this value, the better the
bandwidth limitation is done. However take care to not give too low value

* runlimit: nonNullnteger default="10000" Optional
Limit by batch of active transfers (10000)
* delaycommand: nonNullnteger default="5000" Optional
Delay between 2 execution of the Commander (5s)
* delayretry: nonNullnteger default="30000" Optional
Delay between 2 attemps in case of error (30s)
Example:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns: x0="http://www.w3.0rg/2001/XMLSchema">
<comment>Example of config file: change its as your need.</comment>
<identity>
<hostid>hosta</hostid>
</identity>
<limit>
<sessionlimit>0</sessionlimit>
<globallimit>0</globallimit>
<delaylimit>10000</delaylimit>
<runlimit>10000</runlimit>
<delaycommand>5000</delaycommand>
<delayretry>30000</delayretry>
</limit>
</config>

Waarp R66 Rule Configuration File
rule
* comment: string Optional
* idrule: nonEmptyString
Rule ID
* hostids
List of Host Ids allowed to use this rule. No Host Id means all allowed.
© hostid: nonEmptyString unbounded
Host ID allowed to use this rule
* mode: nonNullnteger
1=SEND 2=RECV 3=SEND+MD5 4=RECV+MD5
* recvpath: nonEmptyString Optional default="IN"
Default Receive Directory
* sendpath: nonEmptyString Optional default="OUT"
Default Send Directory
* archivepath: nonEmptyString Optional default="ARCH"
Default Archive Directory
* workpath: nonEmptyString Optional default="WWORK"
Default Working Directory
e rpretasks
List of tasks -if any- to execute before transfer on receiver side
* rposttasks
List of tasks -if any- to execute after transfer on receiver side
* rerrortasks
List of tasks -if any- to execute after an error on receiver side
* spretasks
List of tasks -if any- to execute before transfer on sender side
* sposttasks
List of tasks -if any- to execute after transfer on sender side
* serrortasks
List of tasks -if any- to execute after an error on sender side
Where List of tasks is
* tasks

o task Optional unbounded

Example:

<rule>

type: nonEmptyString

Type of Task: LOG, MOVE, MOVERENAME, COPY, COPYRENAME, EXEC,
EXECMOVE, EXECOUTPUT, EXECJAVA, TRANSFER, VALIDFILEPATH,
DELETE, LINKRENAME, RESCHEDULE, TAR, ZIP, TRANSCODE,
SNMP

path: nonEmptyString

Argument -often a path- applied to the task where substitution can occur like
#TRUEFULLPATH#, #FILESIZE#, #RULE#, #DATE#, #TRANSFERID#, ...

delay: nonNeglinteger
Maximum delay for execution of the task in ms

<idrule>rule2</idrule>

<hostids>

<hostid>hosta</hostid>
<hostid>hostb</hostid>

</hostids>

<mode>2</mode>
<recvpath></recvpath>
<sendpath></sendpath>
<archivepath></archivepath>
<workpath></workpath>

<rpretasks>

<tasks>
<task>

<type>LOG</type>
<path>mon info</path>
<delay>0</delay>
<rank>0</rank>

</task>
<task>

<type>LOG</type>

<path>une autre info</path>
<delay>0</delay>
<rank>1</rank>

</task>
</tasks>

</rpretasks>
<rposttasks>

<tasks>
<task>

<type>LOG</type>
<path>test</path>
<delay>0</delay>
<rank>0</rank>

</task>

<taskno>

<type>EXECRENAME</type>

<path>D:/GG/R66/conf/montest.bat #TRUEFULLPATH#
D:\GG\FTP\fredo\a\#TRANSFERID# #ORIGINALFILENAME# #TRUEFILENAME#
#ORIGINALFILENAME# #DATE# #HOUR# #REMOTEHOST# #LOCALHOST# #TRANSFERID#
#RANKTRANSFER# #BLOCKSIZE#</path>

<delay>20000</delay>

<rank>0</rank>
</taskno>
<taskno>
<type>COPYRENAME</type>

<path>D:/GG/FTP/fredo/a/#DATE# #HOUR# #TRANSFERID# #REMOTEHOST# #LOCALHOST# #ORI
GINALFILENAME# #TRUEFILENAME# %s %s</path>
<delay>0</delay>
<rank>0</rank>
</taskno>
</tasks>
</rposttasks>
<rerrortasks>
<tasks>
<task>
<type>LOG</type>
<path>erreur</path>
<delay>1</delay>
<rank>0</rank>
</task>
</tasks>
</rerrortasks>
<serrortasks>
<tasks>
<task>
<type>LOG</type>
<path>erreur</path>
<delay>1</delay>
<rank>0</rank>
</task>
</tasks>
</serrortasks>
</rule>

Waarp R66 Authentication Configuration File
authent

* comment: string Optional
* entry Multiple(1: n)
Used to initialize remote Hosts table at setup or with client with no database support
© hostid: nonEmptyString
Host ID of remote Host
© address: address (DNS or IP)
Address of remote host (IP or DNS entry)
°o port: nonNullnteger
Port associated with the Address of the remote Host
o isssl: booleanType default="False"
True if this Address Entry is for SSL mode
© admin: booleanType Optional default="False"
True if this Address Entry allows Admin access through R66 Protocol
o isclient: booleanType Optional default="False"
True if this Address Entry is for a Client
o keyfile: GGP-File choice 1
GoldenGate Password File containing the password for this host
° key: nonEmptyString choice 2
GoldenGate Password for this host
Example:

<?xml version="1.0" encoding="UTF-8"?>
<authent xmlns: x0="http://www.w3.0rg/2001/XMLSchema">
<comment>example for ServerA</comment>
<entry>
<hostid>hosta</hostid>
<address>127.0.0.1</address>
<port>6666</port>
<isssl>False</isssl>
<keyfile>D:\GG\R66\certs\test-passwd.ggp</keyfile>
</entry>
<entry>
<hostid>hostas</hostid>
<address>127.0.0.1</address>
<port>6667</port>
<isssl>True</isssl>
<admin>True</admin>
<keyfile>D:\GG\R66\certs\test-passwd.ggp</keyfile>
</entry>
<entry>
<hostid>hostb</hostid>
<address>127.0.0.1</address>

<port>6676</port>
<isssl>False</isssl>
<isclient>False</isclient>
<keyfile>D:\GG\R66\certs\test-passwd2.ggp</keyfile>
</entry>
<entry>
<hostid>hostbs</hostid>
<address>127.0.0.1</address>
<port>6677</port>
<isssl>True</isssl>
<admin>True</admin>
<key>ab5847a6ebb2eb5230554eb160326e7b1£53a193d9c6eelb0</key>
</entry>
<entry>
<hostid>test</hostid>
<address>127.0.0.1</address>
<port>6670</port>
<isssl>False</isssl>
<isclient>True</isclient>
<keyfile>D:\GG\R66\certs\test-passwd3.ggp</keyfile>
</entry>
<entry>
<hostid>tests</hostid>
<address>127.0.0.1</address>
<port>6670</port>
<isssl>True</isssl>
<admin>True</admin>
<isclient>True</isclient>
<keyfile>D:\GG\R66\certs\test-passwd3.ggp</keyfile>
</entry>
</authent>

Tasks in rules

We focus here on the several tasks that are possible to run before a transfer starts (pre
action), after a transfer is finished correctly (post action) or after an error occurs (either in
pre or post action or during transfer: error action).

Those actions are defined in one rule. Each rule contains 2 parts:

1. Sender actions: A host is a Sender if it is the requester on a SEND rule or if it is the
requested on a RECV rule.

2. Receiver actions: A host is a Sender if it is the requester on a RECV rule or if it is
the requested on a SEND rule.

Each action could be on pre, post or error step, each step can have several actions.
It is defined with a unified form of XML:

<tasks>

<task>
<type>NAME</type>
<path>path</path>
<delay>x</delay>

</task>

<task>
<type>NAME</type>
<path>path</path>
<delay>x</delay>

</task>

</tasks>

* Type is the type of task to execute (see below the supported types)

« Path is a fixed argument for the task to execute. On this argument, string
replacements are done when the following patterns are found:

°© #TRUEFULLPATH# : Current full path of current FILENAME
°o #TRUEFILENAME# : Current FILENAME (basename) (change in retrieval part)

o H#ORIGINALFULLPATH# : Original full path FILENAME (before changing in
retrieval part)

© #ORIGINALFILENAME# : Original FILENAME (basename) (before changing in
retrieval part)

o #FILESIZE# : File size if it exists

o H#INPATH# : In (Receive) path

o #OUTPATH# : Out (Send) path

o H#WORKPATH# : Working (while receiving) path

o #ARCHPATH# : Archive path (for export Log)

o #HOMEPATH# : Home path (to enable for instance relative path commands)
o #RULE# : Rule used during transfer

o #DATE# : Current Date in yyyyMMdd format

o #HOUR# : Current Hour in HHmmss format

o #REMOTEHOST# : Remote host id (if not the initiator of the call)

o #REMOTEHOSTIP# : Remote host IP (if not the initiator of the call)
o #LOCALHOST# : Local host Id

© H#LOCALHOSTIP#: Local host IP

o #TRANSFERID# : Transfer Id

o H#REQUESTERHOST# : Requester host Id

o H#REQUESTEDHOST# : Requested host Id

© #FULLTRANSFERID# : Full Transfer Id as
TRANSFERID REQUESTERHOST REQUESTEDHOST

o HRANKTRANSFER# : Current or final RANK of block
o H#BLOCKSIZE# : Block size used

o #ERRORMSG# : The current error message or NoError if no error occurs until this
call

o #ERRORCODE# : The current error code or '-' (Unknown) if no error occurs until
this call

o #ERRORSTRCODE# : The current error code message or "Unknown" if no error
occurs until this call

o H#NOWAIT# : Used by Exec type task to specify that the command will be
executed in asynchronous mode, without waiting any result from it

o #LOCALEXEC# : Used by Exec type task to specify that the command will be
executed not locally (within the JVM) but outside using a LocalExec Daemon
(specified in the global configuration)

Delay is generally the delay (if any) for execution before the execution becomes out
of time.

Additionnaly, a task will use also the argument from the transfer itself (Transfer
Information). It uses the String.format (info from rule, info from
transfer.split by " "). This enables a very adaptive argument passing to
the various tasks.

Each action is of one of the following items:

LOG
This task logs or writes to an external file some info:
« if delay is 0, no echo at all will be done
« if delay is 1, will echo some information in the normal log

» if delay is 2, will echo some information in the file (last deduced argument will be the
full path for the file output)

* if delay is 3, will echo both in the normal log and in the file (last deduced argument
will be the full path for the file output)

» |If first word of the log is one of debug, info, warn or error, this word will be used as
the log level

Example:
<task>
<type>LOG</type>
<path>warn information /path/logfile</path>
<delay>2</delay>
</task>
This will log a "Warn" log as "warn information" to the file /path/logfile.

If delay is 0, nothing is done. If delay is 1, only normal log (warning log) is made. If delay is 3, then
both logs from 1 and 2 are made.

MOVE

Move the file to the path designed by Path and Transfer Information arguments without
renaming the filename (same basename).

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

Delay is ignored.

The file is marked as moved.
Example:
<task>
<type>MOVE</type>
<path>/newpath/</path>

</task>

This will move the file (not copying it) to the new directory /newpath/. The current file is
now the moved file.

MOVERENAME

Move the file to the path designed by Path and Transfer Information arguments.

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

Delay is ignored.

The file is marked as moved.
Example:
<task>
<type>MOVERENAME</type>
<path>/newpath/newfilename</path>

</task>

This will move the file (not copying it) to the new directory /newpath/ with the new name as
/newpath/newfilename. The current file is now the moved file.

COPY

Copy the file to the path designed by Path argument without renaming the filename (same
basename). The path obtained must be an absolute path (not a relative path).

Delay and Transfer Information are ignored.

The file is not marked as moved.
Example:
<task>
<type>COPY</type>
<path>/newpath/</path>
</task>

This will copy the current file to /newpath/ as /newpath/currentfilename.

The current file stays the previous one (not changed).

COPYRENAME

Copy the file to the path designed by Path and Transfer Information arguments.

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

Delay is ignored.

The file is not marked as moved.
Example:

<task>
<type>COPYRENAME</type>
<path>/newpath/newfilename %s #TRANSFERID#</path>

</task>

Taking into consideration file transfer information to be "myinfoFromTransfer", this will copy
the file as new file /newpath/newfilename_myinfoFromTransfer_transferid where transferid
will be replaced by the unique id (as 123456789).

The current file is not changed and stays the same.

VALIDFILEPATH

Test if the current file is under one of the paths based on the Path and Transfer Information
arguments.

The paths arguments are obtained from Path transformed according to above dynamic
replacements, it is then used as a String Format where Transfer Information is used as
input (String.format (Path, Info)).

The result should be as: "path1 path2 ..." where each path is separated by blank character.

If Delay is not 0, a log is printed out.

The file is not marked as moved.

Example:
<task>
<type>VALIDFILEPATH</type>
<path>/pathl/ /path2/</path>
<delay>1</delay>

</task>

This will check if the current file is under one of the directories specified, here /path1 or
/path2. And it will log out the result of this check.

DELETE

This task deletes the current file.

The current file is no more valid.

No arguments are taken into account.
Example:
<task>
<type>DELETE</type>

</task>

This command will simply delete the current file. Therefore no more file will be currently
hold by the transfer task from this point.

LINKRENAME

Create a link of the current file and make the file pointing to it.

The link first tries to be a hard link, then a soft link, and if it is really not possible (not
supported by the filesystem), it does a copy and rename task.

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

Delay is ignored.

The file is not marked as moved.
Example:

<task>
<type>LINKRENAME</type>
<path>/newpath/filenamelink</path>
</task>

This will try to link the file (if not possible, it performs a copy) to the new directory
/newpath/ with name filenamelink.

RENAME

This task rename the current file without really touching the real file, which means that the
target is changed, while no other action is taken:

After Path is transformed according to above dynamic replacements, it is then used
as a String Format where Transfer Information is used as input
(String.format(Path,Info)). The path obtained must be an absolute path (not a
relative path).

Delay is ignored.

The file is marked as moved.

Example:

<task>
<type>RENAME</type>
<path>/newpath/newfilename</path>
</task>

This will move the current file to the new path specified, but it does not touch the previous
current file.

This command allows to change dynamically the file to send/recv or on post operation,
without touching the real file.

EXEC

Execute an external command given by Path and Transfer Information arguments.

The Delay is the maximum amount of time in milliseconds before the task should be
considered as over time and so in error.

The command path is obtained from Path transformed according to above dynamic
replacements, and after a String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

The file is not marked as moved.

The external command is supposed to behave as the following for its exiting value:
+ exit 0, for a correct execution
» exit 1, for a warned execution (but however correct)
» other exit values for a failed execution

Example:

<task>
<type>EXEC</type>

<path>/path/command arguments #TRANSFERID# #TRUEFULLPATH# %s</path>
<delay>10000</delay>

</task>

Taking into account that File transfer information could be "transferinformation"”, this will
execute the command /path/command with the following arguments: "arguments transferld
/path/currentFilename transferinformation".

EXECMOVE

Execute an external command given by Path and Transfer Information arguments.

The Delay is the maximum amount of time in milliseconds before the task should be
considered as over time and so in error.

The command path is obtained from Path transformed according to above dynamic
replacements, and after a String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

The last line returned by the external command is interpreted as the new full absolute file
path. The external command is responsible to really move the previous file to the new one.

The file is marked as moved.

The external command is supposed to to behave as the following for its exiting value:
» exit 0, for a correct execution
» exit 1, for a warned execution (but however correct)
 other exit values for a failed execution

Example:
<task>

<type>EXECMOVE</type>

<path>/path/command arguments #TRANSFERID# #TRUEFULLPATH# %$s</path>
<delay>10000</delay>
</task>

Taking into account that File transfer information could be "transferinformation”, this will
execute the command /path/command with the following arguments: "arguments transferld
/path/currentFilename transferinformation”. The last line returned by the execution will be
the new file path (absolute) of the current file. Therefore the current file is changed to this
new file path.

EXECOUTPUT

Execute an external command given by Path and Transfer Information arguments.

The Delay is the maximum amount of time in milliseconds before the task should be
considered as over time and so in error.

The command path is obtained from Path transformed according to above dynamic
replacements, and after a String Format where Transfer Information is used as input
(String.format (Path, Info)). The path obtained must be an absolute path (not a
relative path).

All lines returned by the external command (normal output) is interpreted as the possible
error message in case of error.

If no error (O or 1 as exit value), the output is ignored (no file move is done).

The file is not marked as moved, except in case of error (and if NEWFILENAME: is used
as a prefix to the filename).

The external command is supposed to to behave as the following for its exiting value:
» exit 0, for a correct execution
» exit 1, for a warned execution (but however correct)

» other exit values for a failed execution, for which the output (stdout) lines are used
as error message, bring back to the remote host as #ERRORMSG# and
#ERRORCODE# / #£ERRORSTRCODE#, and NEWFINALNAME: is used to find
the new filename (if any)

Example:
<task>
<type>EXECOUTPUT</type>
<path>/path/command arguments #TRANSFERID# #TRUEFULLPATH# %s</path>
<delay>10000</delay>

</task>

Taking into account that File transfer information could be "transferinformation”, this will
execute the command /path/command with the following arguments: "arguments transferld
/path/currentFilename transferinformation".

If the execution is in error, the output will be bring back to the remote host through
"#ERRORMSG# and "#ERRORCODE#".

Moreover, in case of error, if the last line contains the prefix NEWFILENAME:, then the
current file is move (logically) to this new one.

EXECJAVA

Execute an external Java class given by Path and Transfer Information arguments.

The Delay is the maximum amount of time in milliseconds before the task should be
considered as over time and so in error.

The class name (which must implement R66Runnable) is obtained from Path transformed
according to above dynamic replacements, and after a String Format where Transfer
Information is used as input (String.format (Path, Info)). The first argument is this
full classname. The allocation must be of the form new MyClass(), so an empty
constructor.

The file is not marked as moved.
Example:
<task>
<type>EXECJAVAL/type>
<path>java.class.name #TRANSFERID# #TRUEFULLPATH#</path>
<delay>10000</delay>

</task>

This will execute the class named java.class.name with the following arguments:
"arguments transferld /path/currentFilename”.

TRANSFER
Submit a new transfer based on the Path and Transfer Information arguments.

The transfer arguments are obtained from Path transformed according to above dynamic
replacements, it is then used as a String Format where Transfer Information is used as
input (String. format (Path, Info)).

The result should be as r66send command except "-info" must be the last field:

"-file filepath -to requestedHost -rule rule [-md5] [-start
yyyyMMddHHmMms s or -delay (delay or +delay)] -info
transferInformation"

where each field is separated by blank character. Last field (transferInformation)
may contain however blank character.

Delay is ignored.

The file is not marked as moved.
Example:
<task>
<type>TRANSFER</type>

<path>-file #TRUEFULLPATH# -to remotehost -rule ruletouse
-info transfer Information</path>

</task>

This will create a new transfer request, using the current file (#TRUEFULLPATH#), to send
(or receive, depending on the rule way ruletouse) to (from) the remote host, using "transfer
Information" as argument to the transfer.

RESCHEDULE

Reschedule Transfer task to a time delayed by the specified number of milliseconds, if the
error code is one of the specified codes and the optional intervals of date are compatible
with the new time schedule

Result of arguments will be as following options (the two first are mandatory):

* "-delay ms" where ms is the added number of ms on current time before retry on
schedule
e "-case errorCode,errorCode, ..." where errorCode is one of the following

error of the current transfer (either literal or code in 1 character):
ConnectionImpossible (C), ServerOverloaded(l), BadAuthent (A

)
ExternalOp (E), TransferError (T), MDS5Error (M),
Disconnection (D), RemoteShutdown (r), FinalOp (F),
Unimplemented (U), Shutdown(S), RemoteError(R), Internal(I),
StoppedTransfer (H), CanceledTransfer (K), Warning (W),
Unknown (=), QueryAlreadyFinished (Q), QueryStillRunning(s),
NotKnownHost (N), QueryRemotelyUnknown (u), FileNotFound(f),

CommandNotFound (c), PassThroughMode (p)

* "-between start;end" and/or "-notbetween start;end" (multiple times
are allowed, start or end can be not set) and where start and stop are in the
following format:

Yn:Mn:Dn:Hn:mn:Sn where n is a number for each time specification, each
specification is optional, as Y=Year, M=Month, D=Day, H=Hour, m=minute,
s=second.

Format can be X+n, X-n, X=n or Xn where X+-n means adding/subtracting n to
current date value, while X=n or Xn means setting exact value
If one time specification is not set, it is based on the current date.

o [|f "-notbetween" is specified, the planned date must not be in the area.

o |f "-between" is specified, the planned date must be found in any such
specified areas (could be in any of the occurrence). If not specified, it only
depends on "-notbetween".

o If none is specified, the planned date is always valid.

* "—count limit"™ will be the limit of retry. The value limit is taken
from the internal "information on transfer".

Each time this function is called, the limit value will be replaced as newlimit = limit - 1 in the
"info of transfer".

To ensure correctness, the value must be in the "info of transfer" since this value will be
changed statically in the "info of transfer". However, a value must be setup in the rule in
order to reset the value when the count reach 0.

Soin the rule, "-count resetlimit" must be present, where resetlimit will be the new
value set when the limit reach 0. If it is missing, the condition is not applied.

Note that if a previous called to a reschedule was done for this attempt and was
successful, the following calls will be ignored.

Important note: any subsequent task will be ignored and not executed once the
reschedule is accepted. On the contrary, if the reschedule is not accepted, the
following tasks will be executed normally.

* In case start > end, end will be +1 day

* In case start and end < current planned date, both will have +1 day.

Example:
"-delay 3600000 -case
ConnectionImpossible, ServerOverloaded, Shutdown -notbetween

H7:m0:50;H19:m0:30 -notbetween H1:m0:50;H=3:m0:S0 -count 1"

means retry in case of error during initialization of connection in 1 hour if not between 7AM

to 7PM and not between 1AM to 3AM and with a limit of 3 retries (retry will be reset to 1 in
case of 3 attempts).

TAR

Create a TAR from the argument as source and destination or UNTAR files from a TAR file.

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)).

Delay of 1 = UNTAR PATH="sourceFile targetDirectory"

Delay of 2 = TAR PATH="targetFile sourceDirectory"

Delay of 3 = TAR PATH="targetFile sourceFile1 sourceFile2..."

The current file is not touched.
Example:

<task>
<type>TAR<L/type>
<path>/path/sourcetarfile /path/targetdirectory/</path>
<delay>1</delay>

</task>

This will launch a "untar" command of tar file /path/sourcetarfile into directory
/path/targetdirectory.

Z1P

Create a ZIP from the argument as source and destination or UNZIP files from a ZIP file.

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)).

Delay of 1 = UNZIP PATH="sourceFile targetDirectory"

Delay of 2 = ZIP PATH="targetFile sourceDirectory"

Delay of 3 = ZIP PATH="targetFile sourceFile1 sourceFile2..."

The current file is not touched.
Example:
<task>
<type>ZIP</type>
<path>/path/targetzipfile /path/sourcedirectory/</path>
<delay>2</delay>

</task>

This will launch a "zip" command to zip into file /path/targetzipfile all contents from
directory /path/sourcedirectory.

TRANSCODE

Allow to transcode a file from a Charset to another one.

After Path is transformed according to above dynamic replacements, it is then used as a
String Format where Transfer Information is used as input
(String.format (Path, Info)).

e "—from fromCharset"
e "—-to toCharset"

e "-newfile filename" optional argument ; if not used, will be current
filename.extension ; if used, extension is ignored

* "-extension extension" optional argument ; if not used, will be
filename.transcode

fromCharset and toCharset are string representations of the official charsets in Java.

A convenient method (from Waarp Common) allows to list in html (-html), csv (-csv) or text
format (-text) all the supported Charsets from your JVM. To use it, run the following
command:

java -Ccp WaarpCommon-1.2.7.jar
org.waarp.common.transcode.CharsetsUtil [-csv | -html | -—-text]

It could also be used as a test of transcode outside R66:

Jjava -Ccp WaarpCommon-1.2.7.jar
org.waarp.common.transcode.CharsetsUtil —-from fromFilename
fromCharset -to toFilename toCharset

The current file is not touched and is not marked as moved.

Example:
<task>

<type>TRANSCODE</type>

<path>-from fromCharset -to toCharset -newfile /path/file</path>
</task>

This will encode the current file using fromCharset as source charset code and using
toCharset as target charset code, and the result will be placed into the file /path/file.

SNMP
This task SNMP trap or info according to snmp configuration with the info field:
+ if delay is 0, only a warning trap/info is sent with the field info and the Transfer ID
» ifdelayis 1, a trap/info with full transfer information plus the field info is sent
Example:
<task>
<type>SNMP</type>
<path>information</path>
<delay>0</delay>

</task>

This will send a snmp trap/info as "information" plus TransferID.

If the delay was 1, the same is sent with full Transfer information.

FTP

This task FTP allows to have a synchronous file transfer using FTP in a task. It uses the
following parameters:

"-file filepath

-to requestedHost

-port port

-user user

-pwd pwd

—account account]

-mode active/passive]

-ssl no/implicit/explicit]

-cwd remotepath]

-digest (crc,md5,shal)]

-pre extraCommandl with ',' as separator of arguments]
—-command command from (get,put, append)

[-post extraCommand?2 with ',' as separator of arguments]"

[
[
[
[
[
[

The order of commands will be:
1. connection to requestHost on port (if ssl native => using native ssl link)
2. User user

3. PASS pwd

if account => ACCT account
if -ssl & auth => AUTH, PBSZ 0, PROT P
if passive => PASV

NS ok

CWD remotepath; if error => MKD remotepath then CWD remotepath (and
ignoring any error)

8. if pre => extraCommand1 with ',' replaced by ' ' (note: do not use standard
commands from FTP like
ACCT, PASS,REIN, USER, APPE, STOR, STOU, RETR, RMD, RNFR, RNTO, ABOR, CW

D, CDUP, MODE, PASV, PORT, STRU, TYPE, MDTM, MLSD, MLST, SIZE, AUTH)
9. BINARY (binary format)
10. Transfer operation:

1. ifget=>RETR filepath.basename;

2. ifput=>STOR filepath;

3. ifappend => APPE filepath.basename

11. if digest & get/put/append & remote site compatible with XCRC,XMD5,XSHA1 =>
FEAT (parsing if found corresponding XCRC,XMD5,XSHA1) ; then
XCRC/XMD5/XSHA1 filepath.basename ; then locally comparing this
XCRC/XMD5/XSHA1 with the local file

12. if post => extraCommand2 with ' replaced by ' ' (note: do not use standard
commands from FTP like
ACCT, PASS,REIN, USER, APPE, STOR, STOU, RETR, RMD, RNFR, RNTO, ABOR, CW

D, CDUP, MODE, PASV, PORT, STRU, TYPE, MDTM, MLSD, MLST, SIZE, AUTH)
13.QUIT
The current file is not touched and is not marked as moved.
Example:
<task>
<type>FTP</type>

<path>-file /path/file -to remotehost -port port -user
username -pwd password -command put</path>

</task>

This will send (put) the file /path/file to the ftp server remotehost on port port using for
credential username and password.

Example:

<tasks>
<task>
<type>MOVE</type>
<path>/pathout/</path>
<comment>move the file to /pathout/#TRUEFILENAME#</comment>

<delay>0</delay>
</task>
<task>
<type>EXEC</type>

<path>#HOMEPATH#/pathexec/monscript #TRUEFULLPATH# #ORIGINALFILENAME#
#FILESIZE# #RULE# %s %d #REMOTEHOST#</path>

<comment>information passed by transfer is "a string without blank
a_number" and replaced respectively in %s and %d</comment>

<delay>30000</delay>
<comment>maximum 30 seconds to execute this script</comment>
</task>

</tasks>

Waarp R66 Options

Limit CPU / Connexion

With these options (usecpulimit), Waarp R66 Server can limit the new requests
according to a threshold on CPU global usage and on a maximum number of concurrent
requests. When one of these limits is exceeded, the request is refused and postponed for
a random number proportional to 30 seconds (optiontimeoutcon). After 3 retries, the
request is cancelled.

These tests are done both on requester and requested side.

* cpulimit: Value for CPU is in float between 0 and 1 (% of CPU) where O or 1
means no limit.

* usejdkcpulimit: CPU is computed either with native support from JRE (but not
all JRE support this) or either from Java Sysmon library.

* connlimit: Value for connexion is starting from 0 where 0 means no limit.

Check of IP on servers and clients

By default, real IP address used by the remote host is not compared against the IP (or the
resolution given from DNS) stored with the remote Hostld. If for security reasons this is
required, you can enable this check to be done. When activated in checkaddress:

* For a server, the test will always be done.

« For a client, it depends if you enable it through the specific option
checkclientaddress, then 2 cases occur:

» If the client has an address of "0.0.0.0", then no test is done (this special
address is to be used when a lot of remote clients are to be used without high
security challenge).

* If not, then the check is done as for a server.

Host as Client

In version 2.0, a new property is attached to the Host definition: isclient. This property
stands to recognize remote client to prevent a server to try to initiate a request to this
client. Since this client is not a server, it is not listening to incoming requests and therefore
cannot be the target of an incoming request.

The special address "0.0.0.0" can also be used to specify a client but it extends it to not try
to check its IP address. It is useful in the situation where you have a lot of clients and you
don't want to declare them all in the Host table. All those clients will have to share the ID
and the password (and the SSL key in case of strong authentication).

Cryptographic support

In version 2.0, many improvements were done on cryptographic side.

1. SSL: You can now have simple SSL support or even using string authentication of
clients using the trustuseclientauthenticate option.

2. Password: all passwords are crypted using a private DES Key (private to each
server but can be the same if you want). The passwords are crypted both on files,
database. This key is locally referenced by cryptokey option. You have to use the
Waarp Password tool (see Waap Password Tool) to crypt your passwords (at least
for the administrator password) or to use the administration web interface.

3. On the network, a single way crypto key is used, common to all OpenR66 hosts
when they need to exchange passwords.

Store Task within XML file for Thin Client

The special option taskrunnernodb allows you to have a persistent view of the transfer
(the task) for Thin Client without database by using a XML file. It allows to restart a
stopped or cancelled transfer smoothly without starting a new transfer from the beginning.

Usage of No Database for Server

For special project where no database is needed, but then loosing the ability to store all
transfer status and associated capacity (such as automatic retry if not specified in the
rules), the server code now supports to not have any database connections. However it is
still possible to store the trace of the transfers within XML files, such that one can
automatize some actions in regard to the status of each transfer through file analysis. Note
however that some functionality like the monitoring will be limited. The option
taskrunnernodb will allow to use XML files support if set to true. If set to false, no
information will be retained out of memory of the process.

Control on restart transfer

Although an interrupted request restarts and each received packet should have been
previously validated, the protocol include a backward move on the packet rank in order to
ensure the quality of the transfer without doubt. When a transfer is restarted, OpenR66
first checks the receiver rank and takes it as the reference minus a gap. Then it checks the
existing file (reception side) and check again against this rank minus a gap. You can
control this feature by specifying the block size (blocksize) and the gap of rank
(gaprestart), where the retransmitted byte size will be: block size x rank.

Usage of Waarp LocalExec Daemon

In order to improve the efficiency of external commands execution by preventing the fork
of the Waarp R66 JVM process (costly regarding its memory), there is an optional support
to execute those commands through a Waarp LocalExec Daemon (see in Waarp Local
Exec). To use this support, you have to define the following:

* uselocalexec (default="False") to enable the use of LocalExec support
* lexecaddr (optional) which could contains the address (default="127.0.0.1")

* lexecport (optional) which could contains the port to be used (default="9999")

Usage of FastMDS support

FastMD5 is no longer recommended. In order to improve the efficiency of the
computation of MD5 on blocks during file transfer, 3 methods are provided.

http://waarp.github.io/Waarp/WaarpCommons.html
http://waarp.github.io/Waarp/WaarpCommons.html

1. usefastmd5=False => Will use internal JDK support of MD5 computation

2. usefastmd5=True but fastmd5 not declared or empty => Will use Java MD5
implementation more efficient than JDK version

3. usefastmd5=True and fastmd5=path to SO file or DLL (according to the systems)
=> Will use JNI C MD5 implementation suppose to be more efficient than version 2.

However note that the results could depends according to the systems and the JDK. Most
of the time, Version 3 is the fastest, but sometime Version 2 is better than Version 3, and
always better than Version 1. The efficiency of Version 3 greatly depends on the
compilation of the C module. See Waarp Digest in Waarp Commons

It appears with recent versions of JVM that JDK in server mode is really efficient, almost
equivalent to C JNI version. So one might use by default usefastmd5=False.

Note also that a new option can specify which kind of digest you want to use (it is for now
a global option, not a local option): digest where values mean: MD5=0, MD2=1, SHA1=2,
SHA256=3, SHA384=4, SHA512=5, CRC32=6, ADLER32=7.

Usage of the same database between several R66 servers

In case a database is shared among several R66 servers (with different names, so not in
Multiple Monitors support option), the following tables will be totally shared:

» Host table: all partners definition, including itself will be shared among all servers. It
implies also that the Key used to crypt/uncrypt the password are the same for all
servers sharing the database.

* Rules table: all rule definitions will be shared. The difference of real action could be
done either on the recv/send part of the tasks, but also using local variables (see
the R66 Task Options) or local scripts

The following tables, even if shared, will have different entries for each server:
» Configuration table: the bandwidth limitation will be independent for each server

* Runner table: each transfer will be owned by one server only. Even if 2 servers are
partners for the very same transfer, there will be 2 lines in the database, one for
each server (requester and requested).

» MultipleMonitor table: this table is of no use in case of no multiple monitor usage ; in
case of multiple monitor usage with several clusters on the same database, each
cluster will act as a single host (so sharing or not sharing accordingly) and one line
per cluster will be setup in this table.

Usage of Multiple Monitors support

In order to improve reliability of the OpenR66 File Transfer Monitors and the scalability, we
propose a new option that allows to spread the load behind a Load Balancer in TCP mode
(as HA-Proxy) and a shared storage (as a simple NAS).

l. nultiplemonitors=1=>No multiple monitors will be supported (single instance)

http://waarp.github.io/Waarp/WaarpCommons.html

2. multiplemonitors=n => n servers will be used as a single instance to spread
the load and increase the high availability

Note that some specific attentions are needed such as to share the IN, OUT and WORK
storages such that any servers can act on those files and any other storages that must be
shared from the beginning of the transfer (pre-task) to the end of the transfer (post-task),
and as to configure correctly the Load Balancer in TCP mode such as to spread the load
and keep the connection once opened between 2 partners.

The principle is as follow:

* Putin place a TCP load balancer that allows to maintain a TCP connection with one
server behind and that allows to spread the new connection attempts on the pool of
servers available. The algorithm to spread the load could be for instance: the less
connections opened at that time. A detection on open port could be enough to test
the availability of the service. In more complex configuration, one could also
implement a Java method that will do a “message” call to the proposed target server
in order to test its availability.

» The IP/Port of the load balancer service will be the IP/port of the R66 service,
behind it, you will have a set of R66 servers with their own IP/port couples internally
(on which the load balancer spreads the load).

* Note that if the LB is “transparent”, meaning the IP from the client is not changed
from the real server behind, the IP check could be possible on that pool of servers.
Reversely, if the IP shown to the real R66 server is the one from the LB, the IP
check will not be possible. However note that if the LB is transparent, it does not
prevent that the client might still see the LB IP, and not the real R66 server's IP, and
therefore preventing the IP check on client side. So a particular attention is needed
if one wants to enable IP checking while using a LB in front of a pool of R66
servers.

* All R66 servers behind the LB will share the exact same name (ID), both for non
SSL and SSL, and will share also the same database. They will have to share also
the IN, OUT and WORK directories, and probably any other resources needed for
the pre, post and error tasks (through a NAS for instance).

+ All R66 servers will have to specify the same multiplemonitor option with the
number of servers in the pool.

In theory, this enables the following HA capabilities:
* Aload balance of all transfers among several clusters (horizontal scalability).

» A restart on disconnection, even on a crash of the original R66 server, since the
new connection will go through the LB algorithm.

Note however that obtaining a HA R66 service does not required absolutely to have this
option enabled. Indeed, one could check regularly through a monitoring tool that the
service is still responding (using e message for instance), and if not to stop/restart the R66
service accordingly. Since the restart of a request is merely related to the “timeout” time, a

check roughly repeated at that interval should enable a “clean” HA availability without
having the complexity of a LB configuration.

One could also mixed the two solutions, in order to restart one unresponsive server in the
HA pool.

Usage of Thrift support

The “usethrift” option (specifying a port > 0) allows to enable the Thrift server support
in one R66 server. Currently only Synchronous Binary thrift protocol is allowed, so a client
should use “Tsocket” for its Ttransport and “TbinaryProtocol” for its Tprotocol.

One example in Java is given in org.waarp.openr66.protocol.test. TestThriftClientExample
to show how to interact with the Thrift R66 service.

This option should enables more capabilities to R66 to be embedded in existing
applications, in a more large cover than just Java.

The current methods available are:

* transferRequestQuery: allows to initiate a submitted transfer from the related
R66 server to another one. Note that the request could be asynchronous
(immediately returns once the request is submitted) or synchronous (returns only
once the request is done, whatever in error or in success, but it does not take into
account future reschedule if any as it will return the status once the current try is
over).

* InfoTransferQuery: allows to request some information on one particular
transfer request

* isStillRunning: allows to quickly have the information on one particular transfer
request running status or not

* infolListQuery: allows to get the information on file list on the local R66 server

Note that the Thrift service, for security reason, is only opened on 127.0.0.1 address since
no authentication is made, as it stands for a local service.

Error task on Init step transfer

In the early stage of the transfer, some tests are made to validate that the request is valid.
Among those tests, there are:

e unknown rule

* incompatible rule setup between the 2 partners (both requiring they act as the
sender for instance)

» file not found or not readable

» request already started or already totally finished

In those case, previously, no error tasks will run. Now, we decide to enable error tasks to
be run, in particular to enable the “reschedule” task. However, if one is willing to not have
such error tasks running (globally for all rules) in such condition (before any pre task is
executed), it will have to pass the following option to the R66 server java command:

-Dopenrb66.executebeforetransferred=0

Windows Service support

With R66, it is possible to instantiate R66 as a Windows service through Apache
Commons Daemon.

In the source of R66, you will find in the directory org.waarp.openr66.service the script
service.bat. This script has to be updated to reflect your configuration.

@echo off

rem -- DO NOT CHANGE THIS ! OR YOU REALLY KNOW WHAT YOU ARE DOING ;)
rem —-- Organization:

rem -- EXEC PATH is root (pid will be there)

rem -- EXEC PATH\..\logs\ will be the log place

rem -- EXEC PATH\windows\ is where prunsrv.exe is placed

rem -- DAEMON ROOT is where all you jars are (even commons-daemon)
rem -- DAEMON NAME will be the service name

rem -- SERVICE DESCRIPTION will be the service description

rem -- MAIN DAEMON CLASS will be the start/stop class used

rem -- Root path where the executables are

set EXEC PATH=C:\Waarp\Run

rem -- Change this by the path where all jars are
set DAEMON ROOT=C:\Waarp\Classpath

rem -- Service description

set SERVICE DESCRIPTION="Waarp R66 Server"

rem -- Service name

set SERVICE NAME=WaarpR66

rem —-- Service CLASSPATH
set SERVICE CLASSPATH=%DAEMON ROOT%\myjar.jar

rem —-- Service main class

set MAIN SERVICE CLASS=org.waarp.openr66.service.R66ServiceLauncher

rem -- Path for log files
set LOG_PATH:%EXEC_PATH%\..\logs

rem -- STDERR log file: IMPORTANT SINCE LOG will Dbe there according to
logback.xml

set ERR _LOG FILE=%LOG_PATH%\stderr.txt

rem -

- STDOUT log file: IMPORTANT SINCE LOG will Dbe there according to

logback.xml

set OUT LOG FILE=%LOG PATHS%\stdout.txt

rem —-- Startup mode (manual or auto)

set SERVICE STARTUP=auto

rem -- JVM option (auto or full path to jvm.dll, if possible pointing to server
version)

rem example: C:\Program Files\Java\jdkl.7.0 05\jre\bin\server\jvm.dll

set JVMMODE=--Jvm=auto

rem -- Java memory options

set JAVAXMS=64m

set JAVAxXMX=512m

rem -

- Logback configuration file: ATTENTION recommendation is to configure

output to STDOUT or STDERR

set LOGBACK CONF=%EXEC_ PATH%\..\conf\logback.xml

rem -- R66 configuration file

set R66_ CONF=%EXEC PATH%$\..\conflconfig-serverA2-2.xml

rem -- prunsrv.exe location

set PRUNSRVEXEC=%EXEC PATH%\windows\prunsrv.exe

rem -- Loglevel of Daemon between debug, info, warn, error

set LOGLEVEL=info

Usage of ExecJava class

In order to facilitate the integration in application modules, OpenR66 now supports the

ability

to run specific Java Class through 3 ways. Note that this functionality is only valid

starting in version 2.3.

One is through pre or post or error tasks using the EXECJAVA keyword, following by
the full class name which must implement the R66Runnable interface.

Another one is through specific R66Business command, which will also execute an
R66Runnable implementation, through for instance the AbstractExecJavaTask
abstract class that could be extended.

Finally, there is the possibility to associate a Business Class (see
R66BusinessInterface) through a Business Factory (see

R66BusinessFactoryInterface) to each transfer that will run several methods
in the various steps that could occur:

* void checkAtStartup (R66Session session): launched at the very

startup of the transfer and before the pre commands

void checkAfterPreCommand (R66Session session): launched after
the pre commands and before the transfer starts

void checkAfterTransfer (R66Session session): launched after
the transfer is finished and before the post commands

void checkAfterPost (R66Session session):launched after the post
commands and before the end of the request

void checkAtError (R66Session session): launched once an error
OoCcurs

void checkAtChangeFilename (R66Session session): launched if
the filename is changed during the commands (pre or post)

void releaseResources (): launched at the very end, to release any
internal resources that should be released

String getInfo() and void setInfo(String info): launched by
programmatic (business code) to enable to set a special info (as String) and
to retrieve it at any time.

Note that to allow a host to call a Business Request, it has to be added in the
configuration file as

<business><businessid>hostname</businessid>...</business>.

If not set, the host will not be allow. On EXECJAVA, the security is first that the rule
is only local to the host, and second the rule has the possibility to limit the allowed
hosts to be partner of it.

Transcode support

With R66, it is possible to transcode one file from one charset to another charset using the
TRANSCODE task. This one takes 2 arguments: -from fromCharset and -to
toCharset where fromCharset and toCharset are string representations of the official
charsets in Java. Optional arguments -newfile newfilename and -extension
extension could be added. If -newfile is specified, the target filename will be the one
specified. If it is not specified, the target filename will be the source filename with as
extension either the one specified, or if not specified, the extension “.transcode”.

For EBCDIC charsets, see:

http://www-01.ibm.com/software/globalization/ccsid/ccsid_registered.html

http://publib.boulder.ibm.com/infocenter/pcomhelp/v5r9/topic/com.ibm.pcomm.doc/r
eference/html/hcp_reference.htm

In particular (but not limited to), one could consider the following charsets (from or

France: IBM297 or IBM01147

http://publib.boulder.ibm.com/infocenter/pcomhelp/v5r9/topic/com.ibm.pcomm.doc/reference/html/hcp_reference.htm
http://publib.boulder.ibm.com/infocenter/pcomhelp/v5r9/topic/com.ibm.pcomm.doc/reference/html/hcp_reference.htm
http://www-01.ibm.com/software/globalization/ccsid/ccsid_registered.html

 ltaly: IBM280 or IBM01144

* UK: IBM285 or IBM01146

* International (Switzerland, Belgium): IBM500 or IBM01148
* Austria/Germany: IBM273 or IBM01141

* Spain and Latin America: IBM284 or IBM01145

* Portugal, Brazil, USA, Canada, Netherlands: IBM037 or IBM01140
* Central and Eastern Europe: IBM870

* Cyrillic: x-IBM1025 (x-IBM13817?)

* Turkey: IBM1026

* Cyrillic Ukraine: x-IBM1123

* Denmark, Norway: IBM277 or IBM01142

* Finland or Sweden: IBM278 or IBM01143

* Greece: x-IBM875 or x-IBM1124

A convenient method (from Waarp Common) allows to list in html (-html), csv (-csv) or text
format (-text) all the supported Charsets from your JVM. To use it, run the following
command:

java -cp WaarpCommon-1.2.7.Jjar
org.waarp.common.transcode.IdentifyCharsetsAvailable [-csv|-html|-text]

It could also be used as a test of transcode outside R66:

java -cp WaarpCommon-1.2.7.Jjar org.waarp.common.transcode.CharsetsUtil
-from fromFilename fromCharset -to toFilename toCharset

Note that in MVS environment, it might be necessary to use -Dfile.encoding=UTF8 to
fix some issues with passwords.

An extract as example of the output from a JDK 1.7.05 Windows from Oracle using -html
option:

Name CanEncode IANA Registered Aliases

¢ ccsid01140

* ¢p01140
IBM01140 true true

« 1140

« cp1140
IBM01141 true true * cpl1141

¢ ccsid01141
* ¢cp01141

1141

IBM01142

true

true

cp01142
cp1142
1142
ccsid01142

IBM01143

true

true

cp01143
1143
ccsid01143
cp1143

IBM01144

true

true

cp01144
cp1144
ccsid01144
1144

IBM01145

true

true

cp1145
cp01145
ccsid01145
1145

IBM01146

true

true

ccsid01146
cp01146
cp1146
1146

IBM01147

true

true

ccsid01147
cp1147
1147
cp01147

IBM01148

true

true

cp1148
ccsid01148
1148
cp01148

IBM01149

true

true

cp1149
cp01149
ccsid01149
1149

IBM285

true

true

ibm285
ebcdic-cp-gb

e cpibm285
¢ cp285

* csIBM285
* ebcdic-gb
« 285

+ ibm-285

e cp297

* ibm297

. 297
IBM297 true true e cpibm297

* ebcdic-cp-fr
* ibm-297

+ cslBM297

FTP Client support

With R66, it is possible to forward or receive a file by FTP. In passive mode (an external
FTP client connects to the server to initiate a server), one can use the Waarp Gateway
FTP. In active mode (the server will connect to a remote FTP server to initiate a transfer),
one can use the integrated FTP Client (based on FTP4J) as a Task after or before a file
transfer. This client is compatible with FTP, FTPS and FTPSE. In R66, the task is named
FTP. See in Waarp Commons the package Waarp Ftp Client.

Proxy/Reverse Proxy support

With R66, it is possible install a proxy/reverse proxy in a DMZ in order to ensure high level
of security. This Proxy/RP will forward any request to the target defined. No database is
needed for this R66 Proxy. See in Waarp Commons the package Waarp Proxy R66.

Global Digest support

With R66, it is now possible (from 2.4.10) to have only one Digest per file transfer.
Previously it was optional and only by packet. While this is still possible, it is also optional
to have one global digest computed efficiently for the full file transfer. This option is
activated by default but could be deactivated by using the <limit><globaldigest>
entry set to false or 0.

Self Request

With R66, it is now fully supported (from 2.4.10) to send a request of file transfer to itself,
whatever using a direct file transfer or a submitted file transfer.

Enhanced capability to handle filename with "blank" characters

Previously, filename transmitted should not have any "blank" character since they could
introduce some issues. In order to allow such characters in the filename, a change that
could lead to backward incompatibility was made from version 2.4.13. This change now
uses the ": ' as separator (considering this character is not allowed in most filename
implementations). The code keeps the possibility to still accept blank character as
separator (as previously to version <= 2.4.12) and is therefore backward compatible.
However, if one wants to stay with the old way, one can force the R66 server to use the old
blank way by specifying the following property on java command:

-Dopenrb66.usespaceseparator=1

Possibility to block/unblock new requests

When someone wants to stop his Waarp server, he/she might want to wait first that all
requests are over and finished. To do that, it is possible now to ask the Waarp server to
block all new requests while letting the existing one to continue. This operation is
reversible and he/she can unblock as well. This can be achieved either through the web

administration interface, or through the ServerShutdown command using the extra '-
block' or '-unblock' option

Focus on RESCHEDULE Task
The RESCHEDULE task has the following capabilities:

» If one RESCHEDULE task is executed (wherever it is) and validated (the transfer is
really rescheduled), all following tasks are ignored and the execution flow stops

* The task will rely on 2 informations: the rule default information (specifically for the
maximum restart available) and the transfer information which will include the
current retry counter.

The options are:

* "-delay ms" where ms is the added number of ms on current time before retry on
schedule

« "-case errorCode,errorCode, ..." where errorCode is one of the following
error of the current transfer (either literal or code in 1 character):

* ConnectionImpossible(C), ServerOverloaded(l),
BadAuthent (A), ExternalOp(E), TransferError(T),
MD5Error (M), Disconnection (D), RemoteShutdown (r),
FinalOp (F), Unimplemented(U), Shutdown(S),
RemoteError (R), Internal(I), StoppedTransfer (H),
CanceledTransfer (K), Warning (W), Unknown (-),
QueryAlreadyFinished (Q), QueryStillRunning(s),
NotKnownHost (N), QueryRemotelyUnknown (u),
FileNotFound (f), CommandNotFound(c), PassThroughMode (p)

* "-between start;end" and/or "-notbetween start;end" (multiple times are
allowed, start or end can be not set) and where start and stop are in the following
format:

Yn:Mn:Dn:Hn:mn:Sn where n is a number for each time specification, each
specification is optional, as Y=Year, M=Month, D=Day, H=Hour, m=minute,
s=second.

Format can be X+n, X-n, X=n or Xn where X+-n means adding/subtracting n
to current date value, while X=n or Xn means setting exact value

If one time specification is not set, it is based on the current date.
If "-notbetween" is specified, the planned date must not be in the area.

If "-between" is specified, the planned date must be found in any such
specified areas (could be in any of the occurrence). If not specified, it only
depends on "-notbetween".

If none is specified, the planned date is always valid.
In case start > end, end will be +1 day
In case start and end < current planned date, both will have +1 day.

¢ "—count limit" will be the limit of retry. The value limit is taken from the "info on
transfer".

Each time this function is called, the limit value will be replaced as newlimit =
limit - 1 in the "info of transfer".

To ensure correctness, the value must be in the "info of transfer" since this
value will be changed statically in the "info of transfer". However, a value
must be setup in the rule in order to reset the value when the count reach 0.

Soin the rule, "-count resetlimit" must be present, where resetlimit will
be the new value set when the limit reach 0. If it is missing, the condition is
not applied.

Note: When the task is definitively in error (counter to 0), the counter in the transfer
information is reset to the counter default limit set in the rule and the transfer is stopped.
Then it is up to other way to relaunch the transfer to restart the transfer.

Among the various possibilities to relaunch a transfer once it is in error:

Through the RESCHEDULE task, filtered by the error code and according to
constraints and limits

Through the Admin GUI (HTTPS): Transfer -> Restart
Through command line: RequestTransfer or SubmitTransfer

Through API using Thrift: using transferRequestQuery method

Through the database directly by changing the status of UPDATEDINFO to the
value TOSUBMIT (3)

Example of RESCHEDULE usage:

With the following rule:

e "-delay 3600000 -case
ConnectionImpossible, ServerOverloaded, Shutdown -notbetween H7:
mO: SO0;H19: mO: SO -notbetween Hl: mO: SO;H=3: mO: SO -count
lll

The reschedule task means retry in case of error during initialization of connection in 1
hour if not between 7AM to 7PM and not between 1AM to 3AM and with a limit of 3 retries
(retry will be reset to 1 in case of 3 attempts).

Add support for internationalization

It is possible, up to a certain extent, to make Waarp compatible with internationalization. To
change the default locale, use the following property at launch time:

-Dopenr66.locale=xx

Where xx can be one of "en", "fr".

Controling output format
Note that commands can also have a special extra argument: the output format as one of

» -csv : output will be as one line for the title, one line for the data, all fields separated
by ;'

* -property : output will be one value per line, as name=value

* -xml : output will be in XML format

* -json : output will be in JSON format (default)

* -quiet : no output will be done (only logging)

Wildcard character in request of transfer or submit

You can use ™' and '?' standard wildcard characters in your request. Note however the
following issues and way to fix the issue:

* When using wildcard characters combined with DirectTransfer or SubmitTransfer,
the command is in error if the result gives multiple files. To enable multiple files
resolution, use MultipleDirectTransfer or MultipleSubmitTransfer. Note that on
MultipleSubmitTransfer, if the request is a "RECV" request, you can specify the
option "-client" which allows the MultipleSubmitTransfer to run a Requestinformation
first to the remote partner in order to get the list of remote files.

* In some special cases, wildcard characters are badly interpreted (Apache
Commons or Shell first level of interpretation), for instance as "*" , "™*.*" or "*xx" . In
particular, the shell might replace immediately the value, which is not the desired
result. In order to allow a "non-interpreted" wildcard character, Waarp allows to use
the char '§' in place of ™', so for the previous examples giving "%", "%.%" , "%xx".
You can of course still continue to use "™ and '?'.

The Special Configuration fields (System menu)

Business

Each host name specified here will have the ability to make business request (special Java
Class to handle B2B functionalities). This information could be passed through the XML
configuration file or through the Business field of the Host configuration in the database
(System Menu). The format is:

<business><businessid>idl</businessid><businessid>id2</busine
ssid>...</business>

Roles

If specified for one host, this will override database roles. By default, local server should be
added as role = FULLADMIN in XML file. This information could be passed through the
XML configuration file or through the Roles field of the Host configuration in the database
(System Menu). The format is:

<roles><role><roleid>idl</roleid><roleset>rolesSet</roleset><
/role>...</roles>

* Where idx is an host id (1 by 1) for which you require to override default database
roles

* Where rolesSet is a set of roles, with separators as blank or'|'

o The roles assign to this host between NOACCESS, READONLY, TRANSFER,
RULE, HOST, LIMIT, SYSTEM, LOGCONTROL,
PARTNER (READONLY, TRANSFER), CONFIGADMIN (PARTNER,RULE,HOST),
FULLADMIN (CONFIGADMIN, LIMIT, SYSTEM, LOGCONTROL)

Example: PARTNER | LOGCONTROL

Aliases

This will allow alias usage for host ids. This information could be passed through the XML
configuration file or through the Aliases field of the Host configuration in the database
(System Menu). The format is:

<aliases><alias><realid>realld</realid><aliasid>aliasSet</ali
asid></alias>...</aliases>

* Where realld is the real host id that will have aliases (locally defined).

* Where aliasSet is a set of alias, with separators as blank or'|'

Example: aliasl|alias2

Other

By default, this field contains the <root><version>version</version></root> xml
information, handle by Waarp to check the database configuration version compared to the
Waarp program, in order to allow automatic update.

* Note that automatic update could be prevented by setting in XML configuration file
<db>dbcheck>False</dbcheck>...</db> or through Java property
-Dopenr66.startup.dbcheck=0

In case the database is shared among several R66 servers, to be able to see all transfer
logs from the Administration Web interface, you need to set a special option in the "Other
informations" with the identifier tha will be used to connect to this web interface.

<root>...<seeallid>idl,id2,...,1idn</seeallid></root>

* Such containt will allow any of the ids id1, id2, ... or idn to see, once connected to
the administration web interface, the full content of the database from the transfer
menu. Note however that those ids need to have also the CONFIGADMIN role since
this ability has to be controlled (see Roles item to see how to configure the roles).

Waarp R66 Internals

R66 Protocol

We describe here the logic of the protocol. It has been designed to be efficient, secured
and to fullfill specific requirements of MFT and integration in IT.

A simplified picture is shown here:

Private
Network i i Pre Step Data Block Post Step
Authenticat R t EndTransf EndR t
: Connecton (gzil:lepcltei::) e i Actions Oton " Actions " }_)O

Private
{(Multiplexe) {Authentiatinn {RequestHPre .SteP} {EndTransfer N P“t_ Step
. Actions Actions
Connection

EndRequest

First we describe the different value that can be found.

* A Request (DbTaskRunner) can have several UpdatedInfo status:

o

o

UNKNOWN : no particular information on it.

NOTUPDATED : in used by other database object when they are taken into
account.

INTERRUPTED : a request is interrupted but can be rescheduled.

TOSUBMIT : a request is proposed to be submitted by the Commander (or other
database object are supposed to be taken into account).

INERROR : a request is in error and can not be submitted by the Commander
until its status is changed explicitly.

RUNNING : a request is currently running.
DONE : a request is over and fully done.

* A Request can have several Step values:

o

o

o

NOTASK : the request has never started.

PRETASK : the request is currently in Pre transfer step.

TRANSFERTASK : the request is currently in transfer step.

POSTTASK : the request is currently in Post transfer step (valid transfer only).

ALLDONETASK : the request is fully finished (Updatedinfo is in DONE status
too).

ERRORTASK : the request is currently in the Error step while an error occurs
(either in PRE, TRANSFER or POST step).

A Request has two Step values:
o GlobalStep : the current request step value

o GlobalLastStep : this is the last valid request step value. When GlobalStep is in
ERROR step, GlobalLastStep says in which step it was before entering in error.
This information is used to enable restart of the Request from this valid last step.

Each Step values and Updatedinfo has an ErrorCode detailed information:

o [nitOk : stands for correct initialization of the Request (startup and
authentication)

o PreProcessingOk, TransferOk, PostProcessingOk : stand for correct ending of
the specified step

o CompleteOk : stands for all action are correct (ALLDONE for step and DONE for
Updatedinfo)

© Running : stands for current Step is in Running status.

o StoppedTransfer, CanceledTransfer : stand for a Request where an action
stopped or canceled the given Request. A Stopped Request can be restart from
the current status. A Canceled Request starts from the beginning of the current
step. For instance for the Transfer step, Stopped will imply that restart is from
the current valid transferred block, while Cancel will imply to restart from the
very beginning of the transfer (first block).

o QueryAlreadyFinished : stands for special code where the Request is in fact
remotely already finished and so can be finished locally.

o Other codes specifies different kinds of error (NotKnownHost, Shutdown,
RemotekError, ...):

= Connectionlmpossible : connection is impossible (local or remote)

= BadAuthent : authentication is in error (local or remote)

= ExternalOp : external operation is in error (pre, post or error actions)

= TransferError : transfer is in error (for instance, uncorrect block)

= MDAS5Error : transfer is in error due to a bad MD5 checking (in MD5 mode)
= Disconnection : the network was disconnected

= RemoteShutdown : the remote host is in shutdown

= Shutdown : the local host is in shutdown

= FinalOp : a final operation (not an external operation) is in error (for instance
the finalization of the received file)

= Unimplemented : the requested command is unimplemented (for instance, a
task in a rule is unknown)

= RemoteError : a remote error was received and stops the transfer

m /nternal : an internal error arrives

= Warning : an external execution (pre or post operation) is executed well but
with a warning (code 1)

» Unknown : an unknown error arrives
= QueryStillRunning : a required transfer during a restart is still in transfer
= NotKnownHost : the remote host is unknown

= QueryRemotelyUnknown : a required transfer during a restart or other
commands should exist but is not identified on the remote host (for instance
after a purge of log)

» FileNotFound : the file is not found
= CommandNotFound : the Command is not found

= PassThroughMode : the requested transfer (restart) is in PassThrough mode
and is not compatible with the required action

A request of transfer follows a sequential logic:

Startup

* Requester:

1.

The requester checks first if the given partner name is an alias, and if so,
replaces it by the real host id.

The request is registered in the database with a TOSUBMIT status.

A Request that was in a INTERRUPTED status is changed in a TOSUBMIT
status.

The Commander get some requests with the TOSUBMIT status and makes
them as RUNNING status.

The Commander submits those requests as separates ClientRunners.

The ClientRunner first checks that the given Request is not a "Self Requested"
request, meaning that only requester host can execute a ClientRunner, except if
this request was in the POSTTASK step so that Requested Host can finalize the
request.

The ClientRunner gets the remote requested Host address and tries to open the
connection. If a network conection with the given requested host is already
opened, this network connection is reused by the new ClientRunner.

The connection can use SSL support (different port than non SSL). This is an
option of transfer. This option is selected while selecting the Host ID for SSL
support for the remote Requested Host. This option is CPU and Memory
consuming.

* Requester and Requested:

1.

Once the network connection is found, a private connection (in memory
connection) is opened to enable the multiplexing of this request with other
requests on the same network connection. This private connection is attached to
a new LocalChannelReference which references the Request, the session, the
remote and private connections. A valid LocalChannelReference contains two

private connection Ids, one for the local private connection, and one for the
remote private connection.

1. A Startup Message is sent to the local private connection to initiate it.

2. The same Startup Message is sent on the remote private side (when
connection occurs) to initiate the relation between them and to instantiate the
same LocalChannelReference on the remote host.

Authentication

* Requester:

1. Once the LocalChannelReference is OK, the Requester host sends an Authent
Message in order to authenticate this host.

* Requested:
1. The Requested host sends back its own Authent Message too.

Request
* Requester:
1. Once authenticated, the Requester Host sends the Request Message.
* Requested:

1. The Requested Host check if the authentication and the request are
compatibles, check some specific options on the request itself (start, restart, ...),
the status of the file if it is the sender, then it runs its Pre Task step

= The Request is in PreProcessingOK as status.

Pre-Tasks
* Requested:

1. If the Pre Task step is ok, it sends back the validated Request Message to the
Requester Host.

= The Request s in InitOk as detailed information on requester side.
* Requester:

1. The Requester Host check if the authentication and the request are compatibles,
check some specific options on the request itself (start, restart, ...), the status of
the file if it is the sender.

o The Request is in InitOk.
2. The validated Request is now running the Pre Task step.

= Once finished, the Request is in PreProcessingOK status.

Data Transfer

* Sender:

1. Now the transmission can start. From now on, this is the sender that leads the
communication, no more the requester (it could be the same host however,
depending on the way of transfer). The sender (which could be either the

Requested or the Requester host) launch its own RetrieveRunner. This
RetrieveRunner sends to the other host all DataBlock Messages.

2. Each DataBlock Message can include a Hash control (MD5 or SHA or other) of
the packet in it (option of transfer). This option is not mandatory and is CPU
consuming.

3. Once all DataBlock are sent, the RetrieveRunner sends an EndTransfer
Message to the receiver host.

*« Receiver:

1. For each DataBlock, the receiver appends this new block, checking the order of
the block, and optionnaly the hash control.

2. Once all blocks are received, the EndTransfer Message indicates the end of
transmission from the Sender.

Post-Actions

* Receiver:
1.The receiver host executes the Post actions.
= The Request is in PostProcesseingOk status.
2.The receiver host sends back the validated EndTransfer Message.
= The Request is in TransferOk status on sender side.
* Sender:
1. The Request is now on Finalize way. Sender host executes the Post actions.
= The Request is in PostProcesseingOk status.

End Request
+ Sender:

1. Once the PostProcessing is over, the RetrieveRunner (Sender) sends to the
remote host a EndRequest Message.

* Receiver:
1. The remote host sends back the validated EndRequest Message.
* Receiver and Sender:
1. The Request is now totally finished and its status is CompleteOk ALLDONE.

At each step, an error can occurs and will stop the request, setting its Updatedinfo to
INERROR or INTERRUPTED status. The GlobalStep could be in ERROR status if the
ERROR step action is run.

File Status

A file change of status along the transfer according to the receiver or sender of the file
itself. Note that the requester host can be either the receiver or sender, according to the

used rule.

If the Host is the sender:

» At startup, before any pre actions is taken, the file is logically instantiated:

o

If the transfer is in SendThrough mode, no test is done. The file is logically
instantiate as is.

If not, in first try, the file is searched under the default send directory (OUT) in
case of relative path.

If the file is an absolute path, it is searched according to this path.

If the file cannot be found or is not readable (except in SendThrough mode), the
transfer stops in error for no file found.

» After the pre actions, the file is tested again on its existence and access before the
real send:

@)

If the transfer is in SendThrough mode, no test is done. The file is logically
instantiate as is.

If not, in first try, the file is searched under the default send directory (OUT) in
case of relative path.

If the file is an absolute path, it is searched according to this path.

If the file cannot be found or is not readable (except in SendThrough mode), the
transfer stops in error for no file found.

If the file was moved (MOVE or EXECMOVE), the receiver is informed of the
changed source filename.

* Once the transfer is over, no action is taken on the file except those implied by any
post actions.

* In case of error before pre actions, the restart will take the first step of checking
before pre actions.

* In case of error after or while the pre actions, the restart will take into account the
name as stored (eventually modified by previously successfully executed pre-
actions, which will not be re-executed).

If the Host is the receiver:

» At startup, before any pre actions is taken, the file is logically instantiated:

@)

The file is logically instantiate as is.

» After the pre actions, the file is modified:

o

If the transfer starts from zero (usual situation), a temporary unique file is
created in the working directory (using the transfer id, a unique number and the

extension ".r66"). The file is tested in write. The logical file points to this physical
temporary file.

o |f the transfer does not start from zero (a restart occurs), the previous file name
is reused. The file is again tested in write. The logical file points to this physical
temporary file.

o |f the transfer is in RecvThrough mode, no test is done on the file. It is just
instantiated logically on the basis of a temporary unique file virtually created in
the working directory.

o |f the file is not writeable (except for RecvThrough mode), the transfer stops in
error.

It is not a good idea to change the name of the file during the Pre actions for the
receiver. However, it is possible to do so, for instance in order to move this working
file into a different directory than the working directory specified in the rule.

Once the transfer is over, the file is renamed without its temporary extension ".r66"
and is moved into the receive directory (IN). The Post actions can change the name
of the file (MOVE, MOVERENAME, ...). No test is done once the file transfer is over,
even after a move.

In case of error before pre actions, the restart will take the first step of checking
before pre actions.

In case of error after or while the pre actions, the restart will take into account the
name as stored (eventually modified by previously successfully executed pre-
actions, which will not be re-executed).

Transfer Restarting

A transfer can stop for several reasons:

The network connection was interrupted.

One of both hosts is shutting down.

An error occurs (one of the above).

An administrator stops or cancels the transfer.

It is possible to restart a transfer once interrupted.

It is generally recommended that the requester host takes the decision of restarting the
transfer. However, both hosts can try to restart the transfer.

There is several ways to do so:

Using the administrator interface Cancel/Restart web page

Using the RequestTransfer command line

Commands

Waarp R66 is mainly a set of commands,from the server, to the clients, through utilities.

In the following, commands are in fact Class in Java. To access them from shell, follow the
Command line helper.

org.waarp.openr66.server package:_

R66Server

It launches the Waarp R66 Server using as unique argument the full XML configuration
file. It loads the rest of the configuration (or update its configuration) from the database
specified in the XML configuration file.

By default, three services are opened:
* Non SSL file transfer monitor
» SSL file transfer monitor
* HTTP file transfer observer
By default, 5 subdirectories (under the main home) are defined:
» Config directory where configurations files are stored

* Archive directory where archive transfer can be put (using post actions) or where
transfer logs are placed

* Input directory where received files are stored (except if a post action moves it)
* Output directory where to be sent files are stored (or linked)
* Working directory where currently received files are temporarily placed

Utilities:

ServerlInitDatabase

The first step in installation of an Waarp R66 Server or heavy client is to construct the XML
configuration files and to initiate the database that support file transfers and configurations.
This function is an helper for database initialisation.

* The first argument is the JDBC database connection XML file.

From there any argument are optional. Any existing data will be replaced. No data are
deleted if not replaced.

« '-initdb' : It will try to create the database tables and to initiate the sequence (unique
Id by host of runners from runner table).

» '-loadBusiness businessConfig' : It will load the business configuration into the
database HostConfig table.

+ '-loadAlias aliasConfig' : It will load the aliases configuration into the database
HostConfig table.

http://waarp.github.com/WaarpR66/api/org/waarp/openr66/server/package-summary.html
http://waarp.github.io/Waarp/WaarpR66CommandLine.html

'-loadRoles rolesConfig' : It will load the roles configuration into the database
HostConfig table.

« '-dir directory' : this argument is the directory from where to load rules into the
database using the XML rule files present in this directory (rules table).

'-auth hostConfig' : this argument is to load the host authentication XML file into the
database (hosts table).

"-limit limitConfig' : this argument is to load the bandwidth XML file into the database
(configuration table).

'-upgradeDb'": this argument allow to try to upgrade the database schema (from
version 2.4.17).

From that point, the Waarp R66 server (R66Server) can be started.

ServerExportConfiguration

One of the ideas of Waarp R66 is the ability to centralized some information
asynchronously into a centralized database. This centralization can be in two ways:

* Import new rules, host authentication or bandwidth limitation: this can be done using
the ServerlnitDatabase after some file transfers from a post operation which could
execute this utility.

* Export rules, hosts authentication and actual runners (done or not): this is the goal
of this utility. It takes two arguments:

* The client configuration XML file
* The directory where to export files in XML format
It will export Rules, all present Runners, Host Authentications.

ConfigExport

This tool enables to ask the server remotely to export Rules and Hosts configuration into
one file each.

It could be used before a retrieve of the configuration in a central repository.
Options are:

* The first argument is the client XML configuration file

» -hosts : export all Hosts configuration

» -rules : export all Rules configuration

* -business : export all Business configuration

» -alias : export all Alias configuration

* -role : export all Roles configuration

* -host host : try to run this command over host (if allowed)

Configlmport

This tool enables to ask the server remotely to import Rules and Hosts configuration from
one file each.

It could be used before a upload the configuration from a central repository after
transmission.

Options are:

The first argument is the client XML configuration file

-hosts : import all Hosts configuration

-purgehosts : purge all hosts configuration before importing new configuration
-rules : import all Rules configuration

-purgerules : purge all rules configuration before importing new configuration
-business file (if compatible)

-alias file (if compatible)

-roles file (if compatible)

-purgebusiness (if compatible)

-purgealias (if compatible)

-purgeroles (if compatible)

-hostid fileTransferld (if compatible, from a previous file transfer)

-ruleid fileTransferld (if compatible, from a previous file transfer)

-businessid fileTransferld (if compatible, from a previous file transfer)
-aliasid fileTransferld (if compatible, from a previous file transfer)

-roleid fileTransferld (if compatible, from a previous file transfer)

-host host (optional)

ServerShutdown

The Waarp R66 Server can be shutdown mainly in two ways:

Sending a -SIGTERM signal (or under Unix a -SIGUSR1 signal) to the JVM process
hosting the OpenR66 Server.

The prefered way is to use the HTTPS Administrator interface.

Another prefered way is to use this utility which sends a shutdown request through
network but using a key shared physically (adminkey). This utility takes the same
XML configuration file than the server (where the admin key is refered but not stored
in any database) and uses the SSL service.

If one wants to used the non SSL service, use the option -nossl

This command allows also to "block" or "unblock" new requests while leaving
currently running requests to finish normally. To block, add the argument -block’,
to unblock add the argument -unblock'.

LogExport

If one wants to centralized in asynchronous way the transfer logs, this utility is made for it.
Its purpose is to export logs into the archive directory and to eventually purge them from
database. It sends a local request to the server, which really export the logs into a file. No
file are transfered, they are just export to a file in the global archive directory. To use it, two
main ways can be achieved:

1. The local server runs this tool refering the OpenR66 Server using the client
configuration XML file and then running a log request.

2. Directly runs a transfer request where the rule execute at pre processing this utility
(again either in receive or send mode according to the initiate server).

» The First argument is the Client Configuration (eventually without database access).

* The rest of arguments can be:

@)

'-clean' option: Change all Updatedinfo to Done where GlobalLastTask is
ALLDONETASK and status is CompleteOk (sometimes some runners can be
done but UpdatedInfo could be erroneous - no impact but clean function -).

'-purge' option: This option removes all ALLDONETASK from those that will be
exported.

‘-start' option: This option specifies the low limit to select runners from start
runner time. If not specified, there is no low limit.

'-stop' option: This option specifies the upper limit to select runners from start
runner time. If not specified, there is no upper limit.

LogExtendedExport

Same as LogExport but with more options:

» The First argument is the Client Configuration (eventually without database access).

* The rest of arguments can be:

o

'-clean' option: Change all Updatedinfo to Done where GlobalLastTask is
ALLDONETASK and status is CompleteOk (sometimes some runners can be
done but UpdatedInfo could be erroneous - no impact but clean function -).

'-purge' option: This option removes all ALLDONETASK from those that will be
exported.

'-start' option: This option specifies the low limit to select runners from start
runner time. If not specified, there is no low limit.

'-stop' option: This option specifies the upper limit to select runners from start
runner time. If not specified, there is no upper limit.

-startid id: This option specifies the low limit for Transfer Id

-stopid id: This option specifies the upper limit for Transfer Id

-rule rule: This option specifies that logs will only concern this rule
-request host: This option specifies that logs will only concern this host

-pending: This option specifies that logs will only concern pending request

o -transfer: This option specifies that logs will only concern in transfer request

o -done: This option specifies that logs will only concern done (finished) request
o -error: This option specifies that logs will only concern in error request

o -host host: This options specifies a specific server to contact

ChangeBandwidthLimits

This tool enables to change dynamicaly the bandwidth limitations (only in memory, not in
database). To use it, it should be used locally with the admin account.

» The First argument is the Client Configuration (eventually without database access).
» The rest of arguments can be:

o '-wglob' option: Write Global limitation in Bytes by Second (minimum 1024 so
1KBs).

o '-rglob' option: Read Global limitation in Bytes by Second (minimum 1024 so
1KBs).

o '-wsess' option: Write Session limitation in Bytes by Second (minimum 1024 so
1KBs).

o '-rsess' option: Read Session limitation in Bytes by Second (minimum 1024 so
1KBs).

org.waarp.openr66.client package:

All commands accept special extra arguments to format the output as desired:
* -csv : output will be as one line for the title, one line for the data, all fields separated
by ;'
* -property : output will be one value per line, as name=value
e -xml : output will be in XML format
* -json : output will be in JSON format (default)
* -quiet : no output will be done (only logging)

* In addition, for success result, if -logWarn is set (default), the information will be
logged using WARN level, while if -notlogWarn is set, the information will be logged
using INFO level.

Wildcard characters are allowed (**', '?') in submit or direct requests, with some point of
attentions:

* When using wildcard characters combined with DirectTransfer or SubmitTransfer,
the command is in error if the result gives multiple files.

o To enable multiple files resolution, use MultipleDirectTransfer or
MultipleSubmitTransfer.

o Note that on MultipleSubmitTransfer, if the request is a "RECV" request, you can
specify the option "-cient" which allows the MultipleSubmitTransfer to run a
Requestinformation first to the remote partner in order to get the list of remote
files.

http://waarp.github.com/WaarpR66/api/org/waarp/openr66/client/package-summary.html

In some special cases, wildcard characters are badly interpreted (at Shell first level
of interpretation), for instance as ™" , "*.*" or "*xx" . In particular, the shell might
replace immediately the value, which is not the desired result.

o In order to allow a "non-interpreted" wildcard character, Waarp allows to use the
char '§" in place of ™, so for the previous examples giving "%", "%.%" , "%xx".
You can of course still continue to use "™ and '?'.

SubmitTransfer

To transfer a file, two main methods exist. This one is a submission request, so an
asynchronous operation since once the request is submitted, the client returns without
waiting for the end of the operation.

It takes the following argument:

The client XML configuration file as first argument, the one including database
access

At least 3 other arguments are necessary:
o '-to' option: specifies the remote Host Id (either the Id for SSL or not).
o '-file' option: specifies the file to transfer (either in receive or send mode).

o '-rule' option: specifies the rule to apply (which specifies the transfer mode, the
pre, post or error operations, ...).

Or at least 2 other arguments are necessary:

o '-to' option: specifies the remote Host Id (either the Id for SSL or not).
o '-id' option: specifies the Id of a previous transfer (stopped or in error).
Other options are:

o '-info' option: specifies the optional information that is send at the same time with
the transfer request (extra information that could be needed by the remote host).

o '-md5' option: specifies that each block transfer will be checked with a MD5 key.
If the rule used is already in MD5 mode, this option will change nothing.

o '-block' option: specifies the block size (default is 64 KB).

o '-nolog' option: specifies that this transfer will not be logged (only on requester
side).

o ‘'-start' "time start" as yyyyMMddHHmMmss (override previous -delay options)

o '-delay
options)

+delay in ms" as delay in ms from current time(override previous -start

o '-delay' "delay in ms" as time in ms (override previous -start options)

MultipleSubmitTransfer

This function is the same than SubmitTransfer except that multiple hosts and multiples files
could be specifed using a comma (',') as separator to -file and -to arguments.

» -client: If the Rule is a RECV method, passing the -client additionnal option allows
the function to contact the remote servers in case wildcards are used (7*~).

DirectTransfer

This is the second method to transfer a file. This method is direct, so as a synchronous
operation. This time the client will do the real work (transfering the file). The options are
exactly the same than with SubmitTransfer. However two cases exist:

1. Heavy client: The client XML configuration file includes the database access. All
transfer operations will be logged (eventually deleted at the end from the client side
if the '-nolog' option is set). This option is useful for "production" clients in a data
center.

2. Light client: The client XML configuration file does not included the database
access. All transfer operations will not be logged at all (at client side). This option is
useful for "light client" like personal computers where transfering files to or from a
data center is a necessity.

However, both clients can only be the initiator of the transfer (receive or send), since no
service is running once the client is over.

MultipleDirectTransfer

This function is the same than DirectTransfer except that multiple hosts and multiples files
could be specifed using a comma (',') as separator to -file and -to arguments.

SendThroughClient

This method is not a full implemented method. It is a way to route a file transfer from one
protocol in Java to OpenR66. For instance, if a protocol like HTTP upload or FTP upload
allows to get a file upload by packet, you can then route this file transfer through Waarp
R66 to a final Waarp R66 Server using the protocol but without writing an intermediary file
(directly write the bytes from the upload to the Waarp R66 SendThroughClient interface). A
simple example is shown in TestSendThroughClient.

So this method needs some minor developments to be implemented.

RecvThroughClient

This method is not a full implemented method. It is a way to route a file transfer to one
protocol in Java to OpenR66. For instance, if a protocol like HTTP or FTP download allows
to get a file downloaded by packet, you can then route directly the file transfer from Waarp
R66 from a remote Waarp R66 Server using the protocol directly but without writing an
intermediary file (directly write the bytes from the download from the Waarp R66
RecvThroughHandler interface). A simple example is shown in TestRecvThroughClient.

So this method needs some minor developments to be implemented.

ProgressBarTransfer

This method is not a full implemented method. It is a way to implement a file transfer within
a Graphical User Interface or to get information on progression during the transfer. Such
an example is presented in the R66GUI.

So this method needs some minor developments to be implemented

RequestTransfer

This utility is used to get information for a specific runner or to have an action on this
runner.

The arguments are the following:
» The first argument is the client XML configuration file including the database access.
» '-id' option: this is the Runner Id.

« '-to' or '-from' option (exclusive): this specifies the way of the request transfer. '-to'
specifies that the original request was initiated by the current running host to the
remote specified host. '-from' specifies that the original request was initiated by the
remote specifed host.

» Optional arguments (exclusive): without any of those arguments, the request only
returns the current information of the runner.

o '-cancel' option: the runner will be canceled. Any file currently in writing will be
deleted.

o ‘'-stop' option: the runner will be stopped (but not canceled).

o '-restart' option: the runner will be restart (if stopped). Optionnally the following
options can be applied in addition:

= ‘'start' "time start" as yyyyMMddHHmMmss (override previous -delay options)

= 'delay' "+delay in ms" as delay in ms from current time(override previous
-start options)

= '-delay' "delay in ms" as time in ms (override previous -start options)

RequestInformation

This utility is used to get information for a file, a directory, with or without wildcard
characters ("' and '?").

The arguments are the following:
» The first argument is the client XML configuration file including the database access.
» '-to' option: specifies the requested host.
« '-rule' option: the rule
« 'file' the optional file for which to get info (may contain wildcard characters)

Optional arguments (exclusive): without any of those arguments, the request only returns
the existence of the file or directory.

« '-exist' to test the existence.

+ '-detail' to get the detail on file.

» '-list' to get the list of files.

+ '-misx' to get the list and details of files
*Message

This utility is used to send a short message to another server (like a ping in Waarp R66
protocol)

The arguments are the following:
* The first argument is the client XML configuration file
» '-to' option: specifies the requested host.
* '-msg' option: the msg to send

Command line helper

In the zip distribution, there is an example of installation including a bin directory and a
ENV_RG66 file that contains some commands to be used in a shell on a Unix server. It
should be easy to adapt those files to fit your needs.

SERVER SIDE
ré6server
start the Waarp R66 server

no option

r66signal
shutdown locally the server

[PID] optional PID of the server process

r66shutd
shutdown by network the server

[-nossl] [-block | -unblock]

r66limit
change limits of bandwidth

"[-wglob x] [-rglob w] [-wsess x] [-rsess x]"

ro6init

init database from argument

[-initdb] [-loadBusiness businessConfiguration] [-loadRoles
roleConfiguration] [-loadAlias aliasConfig] [-dir rulesDirectory] [-limit
xmlFileLimit] [-auth xmlFileAuthent] [-upgradeDb]

r66export

export the log

[-purge]|[-clean] [-start timestamp] [-stop timestamp]

reocnfexp
export configuration

directory

ree6confexp
export configuration as arguments

[-hosts] [-rules] [-business] [-alias] [-roles] [-host host]

reoconfimp

import configuration as arguments

[-hosts host-configuration-file] [-purgehosts] [-rules rule-configuration-

file] [-purgerules] [-business file] [-purgebusiness] [-alias file] [-
purgealias] [-roles file] [-purgeroles] [-hostid file transfer id] [-ruleid file
transfer id] [-businessid file transfer id] [-aliasid file transfer id] [-roleid
file transfer id] [-host host]

r66export

export the log

[-purge] [-clean] [-start timestamp] [-stop timestamp] where timestamp
are in yyyyMMddHHmmssSSS format eventually truncated and with possible ':- ' as
separators

r66logexport

export the log (extended)

[-host host] [-purge] [-clean] [-startid id] [-stopid id] [-rule rule] [-
request host] [-pending] [-transfer] [-done] [-error] [-start timestamp] [
-stop timestamp] where timestamp are in yyyyMMddHHmmssSSS format eventually
truncated and with possible ':- ' as separators

r66limit

change limits of bandwidth

"[-wglob x] [-rglob w] [-wsess x] [-rsess x "

CLIENT SIDE
ro6info
get information on remote files or directory

"-to host -rule rule [-file file] [-exist | -detail | -list | -mlsx]

roomesg
test the connectivity

-to host -msg "message"

rée6oreq

get information on transfers

-id transferId [-to hostId | -from hostId] [-cancel | -stop | -restart [
-start yyyMMddHHmmss | -delay [+]timeInMs]]

r66syncsend

synchronous transfer

-to hostId -file filepath -rule ruleId [-md5] [-block size] [-nolog] [
-info "information"]

r66send
asynchronous transfer

-to hostId -file filepath -rule ruleId [-md5] [-block size] [-nolog] [
-info "information"]

roomultisend

R66 Multiple Submit

(-to hostId,hostID -file filepath,filepath -rule rulelId) | (-to hostId -id
transferId) [-md5] [-block size] [-nolog] [-start yyyyMMddHHmmssSSS |
-delay +durationInMilliseconds | -delay preciseTimeInMilliseconds] [-info
"information"]

r6émultisyncsend
multiple synchronous transfer

(-to hostId,hostid -file filepath,filepath -rule ruleId) | (-to hostId -id
transferId) [-md5] [-block size] [-nolog] [-start yyyyMMddHHmmssSSS |
-delay +durationInMilliseconds -delay preciseTimeInMilliseconds] [-info
"information"]

Dependencies

This project depends on the following libraries:

NETTY (excellent NIO framework) from version 3.5 (NIO support) and from Netty
version 4.1 from V3 of Waarp items.

Apache Commons IO from 2.3 (special file functions like wildcard support).
Apache Commons Codec from 1.6 (Base64 support).

Apache Commons Compress from 1.4 (TAR and ZIP support).

Apache Commons Exec from 1.1 (external Exec support).

DOM4J from 1.6.1 and JAXEN from 1.1.1 (XML support), only used by the current
implementation of the standard Ftp Server. It could be replaced very easily.

optional: LOGBACK from 1.0.5, can be replaced by any logger facilities (default is
Java native logger). Only used by the current implementation of the standard Ftp
Server. It could be replaced very easily.

optional: JavaSysMon from 0.3.3 (from Waarp Common) to enable the CPU
throtling. If the JRE supports native way, this is optional. If the CPU throtling is not
required, it is optional.

A Database support: right now tested were H2 database engine ; partially tested are
Oracle, PostGreSQL and MySQL/MariaDB support. Any new database could easily
be implemented (only 3 functions are to be implemented).

From Waarp project, two modules are necessary: Waarp Common (files support)
and Waarp Digest (MD5 and other digests support) ; on most of the projects, Waarp
Gateway Kernel is also needed (HTTP support)

From Waarp project: optionally Waarp LocalExec (Local Execution Daemon
support) and Waarp SNMP (SNMP support) which implies to have also SNMP4J
jars

For FTP Client, Waarp uses FTP4J project.

Jackson JSON library from version 2.2

http://www.h2database.com/
https://github.com/FasterXML/jackson
http://www.sauronsoftware.it/projects/ftp4j/index.php
http://waarp.github.io/Waarp/www.snmp4j.org
https://github.com/jezhumble/javasysmon/wiki
http://logback.qos.ch/
http://jaxen.codehaus.org/
http://dom4j.sourceforge.net/
http://commons.apache.org/exec/
http://commons.apache.org/compress/
http://commons.apache.org/codec/
http://commons.apache.org/io/
http://netty.io/

Wiki part

R66Authentication

The authentication occurs at 4 levels:

1.

Host/Key

Mandatory, if a server is not known (no host id in the list, wrong key associated), no
request will be allowed.

SSL
If the SSL mode is used, the trust level of SSL could be managed:
o the SSL Server key is validated by the client (SSL default mode)

o the SSL Client key could be also validated by the server
(trustuseclientauthenticate option, set to False by default, therefore not asking
the client to identify itself with its own SSL key).

So the SSL allows a simple side or dual sides authentication.
IP

o checkaddress=True means that all IP addresses for Servers will be checked
against the real IP on the network connection

o checkclientaddress=True means that all IP addresses for Clients will be checked
against the real IP on the network connection

Those IP are tested to check the consistency between the declaration and the
reality.

o Warning: If a non transparent proxy is present, the IP of source is replaced by
the one from the proxy.

o Warning: For clients, except if one would like to have a very high level of
security, it is in general not recommended to check the IP for the Client in order
to have a simple configuration (for instance, one entry for many clients in a

group)

o Warning: The authentications are stored in the database. Therefore, if several
servers share the same database, they will share also those identifications.

In case of Shared Database

As the administrator option will probably be active for all Servers (since this field is
necessary for themselved to be their own administrator, in order for instance to be
able to shutdown from command line), there is an option that allows to specify a
superset of roles locally, through local files, with fine grain role support. This way of
doing is highly recommended in the case of database shared among several R66
servers, in order to give more flexibility and still security in the roles.

Special configuration

Special notice for Alias: since aliases are just replaced at the very beginning of the
start of any operation, there is no need to have those aliases defined in the Host
database table, since they will rely on the real host definition.

Note that it is possible from version 2.4.22 to specify different levels of applicable
rights to a user connected to the web administration interface:

o

The default admin user (specified in the XML configuration file) has all rights
(super user account)

It is possible to create new user accounts

= Create "dummy" Hosts with a value of PORT < 0 (it will set automatically
Address to 0.0.0.0 and isClient to True).

= Then, you can specify the roles by either setting isAdmin to True (equivalent
to super user account), or by setting the ROLES item to the values decided:

e <roles><role><roleid>username</roleid><roleset>roles
to set</roleset></role></roles>

Roles could be:

o

TRANSFER: allow to access to CANCEL-RESTART sub menu of TRANSFERS
menu

SYSTEM: allow to access to EXPORT sub menus of TRANSFERS menu and to
all functions of SYSTEM menu

CONFIGADMIN: allow to access to HOSTS and RULES menu

By default, all other menus are allowed (LISTING and SPOOLED DIRECTORY
sub menus of TRANSFERS menu, LOGON and START menus) since they do
not act on the server. Note that SYSTEM menu will be limited to showing the
current values (not changing them), except the Web interface language (not the
server language).

You can combine rights, for instance by setting <roleset>TRANSFER
SYSTEM</roleset> for the role, or any combination.

Centralization of Logs

Several ways exist to centralize transfer status.

Using the SNMP behavior, using the same SNMP central point, with the related
level of SNMP trap to be sent by the R66 servers (could be from nothing to All
events, with intermediate levels as Start/Stop, Alert level, Important Warning level,
ALl warning events)

Using the task Export logs function (note that currently Import logs is not
developped, since the behaviour of this central repository is business dependent)
and then file transfer rule to push (or pull) file transfer logs

Using its own tasks ans scripts to centralize status through pre, post and error tasks

Using the same database for all R66 servers, but then leading to possible issue of
latency (database access), even if R66 monitors are not so linked to database
access

R66 Cluster or HA
Cluster configuration and High availability consideration
The cluster principle for Waarp R66 is as the following:

» Having a load balancer, based on TCP, allowing to maintain an open connection to
stay open, and to balance new connection with a pool of R66 servers, using
probably the less connection as elected

» The IP/port of the load balancer service is the R66 service address associated with
the pool of servers

 If the load balancer is transparent, the IP of the client is visible from the R66 servers
in the pool. If the load balancer is not transparent, the IP of the client is replaced by
the IP of the load balancer itself, therefore the R66 servers in the poll will not be
able to check the IP addresses of the partners.

» All servers in the pool will have the exact same IDs (SSL and not SSL), sharing the
same database, the same filesystem sub part (work, out at least, probably also in,
arch and conf). The configuration must set the multiplemonitor to the number of total
available servers in the pool (at most available).

This should enable high availability on the following:

* a balance between several R66 servers (thus leading to less risk of "high
throughput side effects")

* a high availability in the sens that if one server is down in the pool, the others will
ensure the continuity of the service

* a restart on disconnection (after a crash or stop of one server in the pool) using
standard restart procedure of transfer, going to another server but as they all share
at least the database, work and out directory, the transfer can restart easily

However, a well enough service level could be sustained using simple monitoring on R66
server, forcing its stop/restart according to the results, giving almost the same result than
cluster mode.

Indeed, when a server will retry a connection, it will respect a minimal delay between 2
checks, therefore the delay for the monitoring and restart is around this check delay or a
factor of 2 of this delay. For instance, if the timeout/delay is setup to 30s, then the restart
should occur in less than 60s to be almost equal to high availability.

Finally, regarding the database access, it is important to note that R66 monitors have a
certain level of tolerance of unavailability of the database. As long as the transfer is not
finishing, the database updates (which log the current status of the transfer) can be
ignored. Each time, if the database connection is lost, the server will retry to open new
connections when needed. However, when the transfer is finishing (in error or correct), the
R66 server MUST save the status, and therefore, if it cannot, it sends back to its partner
an internal erropr and will keep this transfer status as it was the las time it was saved. The
next time this transfer will be restarted, it will restart form the point saved in the database.

Some specific technical items

Usage of the same database between several R66 servers

In case a database is shared among several R66 servers (with different names, so not in
Multiple Monitors support option), the following tables will be totally shared:

* Host table: all partners definition, including itself will be shared among all servers. It
implies also that the Key used to crypt/uncrypt the password are the same for all
servers sharing the database.

* Rules table: all rule definitions will be shared. The difference of real action could be
done either on the recv/send part of the tasks, but also using local variables (see
the R66 Task Options) or local scripts

The following tables, even if shared, will have different entries for each server:
» Configuration table: the bandwidth limitation will be independent for each server

* Runner table: each transfer will be owned by one server only. Even if 2 servers are
partners for the very same transfer, there will be 2 lines in the database, one for
each server (requester and requested).

* MultipleMonitor table: this table is of no use in case of no multiple monitor usage ; in
case of multiple monitor usage with several clusters on the same database, each
cluster will act as a single host (so sharing or not sharing accordingly) and one line
per cluster will be setup in this table.

Usage of Multiple Monitors support

In order to improve reliability of the OpenR66 File Transfer Monitors and the scalability, we
propose a new option that allows to spread the load behind a Load Balancer in TCP mode
(as HA-Proxy) and a shared storage (as a simple NAS).

* multiplemonitors=1 => No multiple monitors will be supported (single instance)

* multiplemonitors=n => n servers will be used as a single instance to spread the load
and increase the high availability

Note that some specific attentions are needed such as to share the IN, OUT and WORK
storages such that any servers can act on those files and any other storages that must be
shared from the beginning of the transfer (pre-task) to the end of the transfer (post-task),
and as to configure correctly the Load Balancer in TCP mode such as to spread the load
and keep the connection once opened between 2 partners.

The principle is as follow:

* Putin place a TCP load balancer that allows to maintain a TCP connection with one
server behind and that allows to spread the new connection attempts on the pool of
servers available. The algorithm to spread the load could be for instance: the less
connections opened at that time. A detection on open port could be enough to test
the availability of the service. In more complex configuration, one could also
implement a Java method that will do a “message” call to the proposed target
server in order to test its availability.

* The IP/Port of the load balancer service will be the IP/port of the R66 service,
behind it, you will have a set of R66 servers with their own IP/port couples internally
(on which the load balancer spreads the load).

* Note that if the LB is “transparent”, meaning the IP from the client is not changed
from the real server behind, the IP check could be possible on that pool of servers.
Reversely, if the IP shown to the real R66 server is the one from the LB, the IP
check will not be possible. However note that if the LB is transparent, it does not
prevent that the client might still see the LB IP, and not the real R66 server's IP, and
therefore preventing the IP check on client side. So a particular attention is needed
if one wants to enable IP checking while using a LB in front of a pool of R66
servers.

* All R66 servers behind the LB will share the exact same name (ID), both for non
SSL and SSL, and will share also the same database. They will have to share also
the IN, OUT and WORK directories, and probably any other resources needed for
the pre, post and error tasks (through a NAS for instance).

* All R66 servers will have to specify the same multiplemonitor option with the
number of servers in the pool.

In theory, this enables the following HA capabilities:
* Aload balance of all transfers among several clusters (horizontal scalability).

* A restart on disconnection, even on a crash of the original R66 server, since the
new connection will go through the LB algorithm.

Note however that obtaining a HA R66 service does not required absolutely to have this
option enabled. Indeed, one could check regularly through a monitoring tool that the
service is still responding (using e message for instance), and if not to stop/restart the R66
service accordingly. Since the restart of a request is merely related to the “timeout” time, a
check roughly repeated at that interval should enable a “clean” HA availability without
having the complexity of a LB configuration.

One could also mixed the two solutions, in order to restart one unresponsive server in the
HA pool.

R66 in DMZ
For DMZ configuration, several options are available with Waarp.

Waarp Gateway FTP

By installing a Waarp Gateway FTP in DMZ, you can have FTP transfers from
outside in connection with a Waarp R66 server installed in the DMZ too. The
Gateway FTP will allow sending or receiving of file through FTP to/from outside,
while the Waarp R66 will allow sending or receiving to/from internal side. The links
will be made through rules, bot in Gateway FTP and in Waarp R66.

In that case, the R66 DMZ server does not need necesseraly to be accessible from
outside natively, since it is accessed through FTP service.

o Gateway FTP

= Each put will be followed by a send file request from R66 DMZ server to an
internal R66 partner

= Each recv will be prefixed by a recv file request from R66 DMZ server to an
internal R66 partner, then followed by the FTP recv file transfer

o Waarp R66

= Each send file request received by the R66 DMZ server from an internal R66
partner will be followed by a put request in FTP (within R66 as a task) to a
remote FTP server

= Each recv file request received by the R66 DMZ server from an internal R66
partner will be prefixed by a recv request in FTP (within R66 as a task) to a
remote FTP server, then followed by the R66 internal transfer

Waarp R66 in forward mode

By installing a DMZ R66 server, through the rules, it could act as a forward request
will full checking.

The interest is to have full checking at once for all type of transfers, without having
to directly connect to internal R66 servers from outside. The drawback is that this
DMZ R66 server has a full configuration (using database and all host
authentications), which could lead to some issues in very high level protected area.

o Waarp R66

= Each send file request received by the R66 DMZ server from an internal R66
partner will be followed by a send request in R66 (within R66 as a task) to a
remote R66 server

= Each recv file request received by the R66 DMZ server from an internal R66
partner will be prefixed by a recv request in R66 (within R66 as a task) to a
remote R66 server, then followed by the R66 internal transfer

Waarp Proxy R66

By installing a Proxy R66 server, it will forward in both ways requests directly to
external or internal R66 servers.

The interest is to have a minimalist R66 server in DMZ, with no configuration that
could be a source of attack. The drawback is that no control is made within this
Proxy R66 server, meaning that the packet are just transmistted as is to the internal
or external R66 partner. However, if some attacks as deny of service are made, this
will be probably the first level of catch, then enhancing the security level of the R66
solution.

The configuration is made by pair, meaning that each listening interface (address,
port, ssl mode) is linked to one and only one proxified interface (address, port, ssl
mode). Therefore, let say that on internal side we have a R66 server named A, on
external side a R66 server named B, the configuration will be as follow:

o Listening B' in DMZ through address/port/SSL mode (probably none) accessible
from inside, linked to B

o Listening A' in DMZ through address/port/SSL mode (probably yes) accessible
from outside, linked to A

Therefore, in A, the configuration to access to B is made through address/port/SSL
mode defined in B', while the remote partner B will access to A through
address/port/SSL mode defined in A'.

R66 Embedded

Several options are available to have an embedded version of the R66 monitor.

Natively in Java

The first option is to integrate the R66 monitor natively using client integration. Several
examples exist in the distribution to show how to do that.

The second option is to integrate an applicative module with R66 monitor, such that it will
call directly application Java modules during task executions.

Outside Java
The first option is of course to use scripts to call R66 command line commands.

The second option is to use the proposed Thrift interface which facilitates the integration of
the client side in several languages (see Thrift for more details).

Among the supported languages in Thrift, we have:
o C++
- C#
* Cocoa
- D
* Delphi
» Erlang
* Haskell
+ Java
+« OCaml
* Perl
+ PHP
¢ Python
* Ruby
« Smalltalk

R66 with Other Protocols

In order to integrate new protocols within Waarp Gateway and Waarp R66, several options
exist.
Native integration

For FTP, the protocol is already integrated, both in Server (Gateway only) and Client
(Gateway and R66) modes. This integration is done through additional tasks done
before or after a file transfer in the native protocol.

We note active for initiated file transfer request, as for initiating the underlying
network connection, while passive stands for the opposite, as for receiving an
incoming network connection.

o Waarp Gateway
= Native protocol = FTP in server mode (passive)

= Extended protocol = R66 (active) or FTP (active) in pre command (RETRieve
way) or post command (STOre way)

o Waarp R66
= Native protocol = R66 in server mode (passive and active)
= Extended procotol = FTP (active) in pre, post or error commands

Task through integration

The idea is to use external implementation of other protocols through tasks
executing external commands.

This implementation enables for instance to forward a file transfer into another
protocol as in post task. This post task could be:

o EXEC like tasks that execute an external command (native OS command)

o EXECJAVA tasks that execute a Java task using a specific class implementing
the necessary protocol

Using this way enables for instance to migrate from one protocol to R66 protocol
smoothly by keeping one server in the old mode corresponding with one R66
server, both acting as a relay (or gateway) between the 2 protocols, as the Waarp
Gateway FTP does for FTP.

Example: other protocol named XXX
o Send XXX to R66
1. Astandard XXX client sends a file to your XXX server

2. At the end of the reception in your XXX server, the transfer is transformed
into a R66 file transfer using command line

3. If the post execution is blocking in your XXX server, you can get back the
status on the file transfer in R66 protocol (using for instance a blocking
mode) to inform back the XXX client of the overall result

o Recv XXX through R66
1. Astandard XXX client asks to receive a file from your XXX server
2. Ablocking transfer is done with a R66 blocking command

3. Once the receive is done in R66, the XXX server respond to the XXX client
with the file transfer

o Send R66 to XXX
1. A RG66 partner sends a file to your R66 server

2. At the end of the reception in your R66 server, a post task forward this
transfer through your XXX client

3. Once the file transfer in XXX protocol is done, the script launched by R66 get
the status of this transfer for R66 monitor

o Recv R66 through XXX
1. A RG66 partner asks to receive a file from your R66 server
2. A pre-task launches a receive file transfer operation from your XXX client

3. Once the receive is done in XXX protocol, your R66 server respond to the
R66 partner with the file transfer and continue with the R66 protocol

Platform compatibility

Waarp R66 needs at least a JRE 1.6. Until now, here is the list of the tested platforms (but
not limited to):

* Windows (32 and 64 bits)

* Linux (32 and 64 bits, debian (Ubuntu for instance) or redhat (centOS for instance)
based)

« AIX
» Z/OS (not directly tested by Waarp team, but by a final user, with success)

If you are aware of specific platforms where this software was successfully tested, we
would be happy to grow the list.

Waarp R66 Administration & Monitoring

Waarp R66 Server comes with an administrator in HTTPS mode with authentication and a
supervision in HTTP mode without authentication and a SNMP module.

Http Monitoring

The supervision enables only to show information on transfers (active or not) and is
dynamically reloaded every 10 seconds. The access of the supervision is at
http://host address:8066/

(8066 port can be changed in the configuration file).

A specific URL http://host_address:8066/status enables access to simple status
where it returns a 200 OK code if everything is OK, else it returns a small page with some
info and a status as Internal Server Error (500) denoting that some errors were found.

Another specific URL http://host address:8066/statusxml enables access to
detailed status where it returns an xml containing various informations as followed.

Note: statusxml?NB=xxx&DETAIL=1 means how far in the past as xxx seconds this
status should look for and is the given information presenting a detailed information -
DETAIL=1 - or only short information - DETAIL clause absent -.

OpenR66 Monitoring: hosta

Sun Now 14 18:38:42 CET 2010 Bandwidth: IN:00Ibits OUT0Mbits
. MNumber of local active connections: 0 MNumber of network active connections: 2
Default Monitoring:

» Active Transfers
* In Brror Transfers

» Finished Transfers
« All Transfers

Specific Monitoring:

One Choice Active Error Done All: | Active |E|
Number of runners (0 for all): 0 Send

Example of XML output:

<STATUS>

<HostID>hosta</HostID><Date>Mon Feb 21 18: 57: 26 CET 2011</Date><LastRun>Mon
Feb 21 18: 57: 26 CET 2011</LastRun>
<SecondsRunning>180</SecondsRunning><NetworkConnections>2</NetworkConnections><N
bThreads>21</NbThreads>
<InBandwidth>0</InBandwidth><OutBandwidth>0</OutBandwidth>

<OVERALL>
<AllTransfer>78</AllTransfer><Unknown>0</Unknown><NotUpdated>0</NotUpdated><Inte
rrupted>0</Interrupted>
<ToSubmit>0</ToSubmit><Error>1</Error><Running>0</Running><Done>77</Done>
</OVERALL>

<STEPS>
<Notask>1</Notask><Pretask>0</Pretask><Transfer>0</Transfer><Posttask>0</Posttas
k>

<AllDone>77</AllDone><Error>0</Error>

</STEPS>

<RUNNINGSTEPS>

<AllRunning>0</Al1Running><Running>0</Running><InitOk>0</InitOk>
<PreProcessingOk>0</PreProcessingOk><TransferOk>0</TransferOk><PostProcessingOk>
0</PostProcessingOk>

<CompleteOk>0</CompleteOk>

</RUNNINGSTEPS>

<ERRORTYPES>
<ConnectionImpossible>0</ConnectionImpossible><ServerOverloaded>0</ServerOverloa
ded>
<BadAuthent>0</BadAuthent><ExternalOp>0</ExternalOp><TransferError>0</TransferEr
ror>

<MD5Error>0</MD5Error><Disconnection>0</Disconnection><FinalOp>0</FinalOp>
<Unimplemented>0</Unimplemented><Internal>0</Internal><Warning>0</Warning>
<QueryAlreadyFinished>0</QueryAlreadyFinished><QueryStillRunning>0</QueryStillRu
nning>

<KnownHost>0</KnownHost><RemotelyUnknown>0</RemotelyUnknown>
<CommandNotFound>0</CommandNotFound><PassThroughMode>0</PassThroughMode>
<RemoteShutdown>0</RemoteShutdown><Shutdown>0</Shutdown><RemoteError>0</RemoteEr
ror>

<Stopped>0</Stopped><Canceled>0</Canceled><FileNotFound>0</FileNotFound>
<Unknown>1</Unknown>

</ERRORTYPES>

</STATUS>

SNMP monitoring

A SNMP agent is also available in OpenR66 from version 2.1.1. It includes the possibility
to poll values from a SNMP manager or to push value as notification to a SNMP manager
using trap or inform model.

HTTPS Administrator

The administrator allows to take action on transfers (stop, restart, ...), export logs, handle
hosts and rules, and some specific internal functions. It is accessed at

https://host address:8067/

(8067 port can be changed in the configuration file). Note the 's' in https. You will need to
accept the security concern from your browser (specially if the SSL key is generated by
yourself).

Note that it is possible from version 2.4.22 to specify different levels of applicable rights to
a user connected to the web administration interface:

The default admin user (specified in the XML configuration file) has all rights (super
user account)

It is possible to create new user accounts by creating "dummy" Hosts with a value
of PORT < 0 (it will set automatically Address to 0.0.0.0 and isClient to True).

Then, you can specify the roles by either setting isAdmin to True (equivalent to
super user account), or by setting the ROLES item to the values decided:

<roles><role><roleid>username</roleid><roleset>roles to
set</roleset></role></roles>

Where roles to set could be:

TRANSFER: allow to access to CANCEL-RESTART sub menu of TRANSFERS
menu

SYSTEM: allow to access to EXPORT sub menus of TRANSFERS menu and to all
functions of SYSTEM menu

CONFIGADMIN: allow to access to HOSTS and RULES menu

By default, all other menus are allowed (LISTING and SPOOLED DIRECTORY sub
menus of TRANSFERS menu, LOGON and START menus) since they do not act
on the server. Note that SYSTEM menu will be limited to showing the current values
(not changing them), except the Web interface language (not the server language).

You can combine rights, for instance by setting <roleset>TRANSFER
SYSTEM</roleset> for the role, or any combination.

Internationalization of the Web interface (and the server and client) is now fully supported
from version 2.4.22:

[.]Hm START | TRANSFERS | HOSTS | RULES | SYSTEM | LOGON |

System

You can edit system configuration from here, disconnect from the administrator or even shutdown the OpenRE6 server.

Change language mode of Web interface: x= @Il

Change language mode of All OpenREs Server: x @Il Language @
— 1

Here are some pictures from the administrator:

The Logon screen

m START | TRANSFERS | HOSTS | RULES | SYSTEM | Logon

Logon

You need to login to access to the OpenRes Administrator,

Usernarme: |f

Password: [esesss Lagan |

| Termine | = 4

The Start screen

W START | TRANSFERS | HOSTS | RULES | SYSTEM | Loson |

Start

This site is the Administrator site of OpenRéa,

The current host is:
bpargloz

The current adrinistrator is:
rmonadmin

OpenR66 is part of the GoldenGate Project: see the Web site http: /fopenres free fr

Author: Frederic Bregier

The Transfers main screen

mam START | TRANSFERS | HOSTS | RULES | SYSTEM | LoGON |

LsTiNG ¥ Transfers
AN AT In this menu, you can adrinistrate transfers,
EXPORT

+ Listing helps yvou to list all transfers according to some criteria,
+ Cancel-Restart helps you to stop (cancel) active transfers ar to restart pending transfers,
+ Export helps you to export to an ¥ML file the current log of the transfers,

The Transfers Listing screen

mﬂm START | TRANSFERS | HOSTS | RULES | SYSTEM | LoGON |

UsTiG P Listing

CANCEL-RESTART

Listing of Transfers according to criteria,
EXPORT

From Specialld: @ To Specialld: @
From date:! @ To date: @
Rule: @ Requested/Requester: @

I-Pending [1 Transfer [1n Error W Done [l

Stey F
Specialld Rule Filename P Action| Status | Internal |Black jsSenderjsMavedReq quast; Start Stop [Bandwidth ree
LastStey Space
Rule {appli Operation
Marne:rulesenddiredy 2009-10-20 | 2009-10-20
922337 2036554704187 MODETRANS: fifsssé;;t: 0 ;on;:le‘:ed 10306 false | true |bparql03|bpargi02 517,37, 728015:18:32.115 100,26 [B586420)
SENDMODE au ozl otActive
Rule {appli Operation
Harne:rlesenddiredy 2009-10-20 | 200%-10-20
F9223372036854704199) MODETRANS: fifsssés;ti 0 c;n;sle‘:ed 10906 false | true |bparql03|bpargllz 55,1707, 79615:18:00, 055 104,34 [E586419
SENDMODE ou .tz otACOve|
Rul
. e faooli
4

Qoeration S B | _H
}

The Cancel-Restart Transfer screen

pf
Il

LISTING
CANCEL-RESTART
EXPORT

START | TRANSFERS | HOSTS | RULES | SYSTEM | LocoN |

¥ Cancel-Restart

Select a Transfer and choose the operation to do

FromSpecwaIId [osmansesarosers @ To Specialld: 9223372036854?0555 1@

From date

@ To date: I

Rule: @ Requested/Raquaster: @

[Pending I¥ W 1 Transfer [tn Error [one [4l

The Hosts Screen

ap
1

START

TRANSFERS | HOSTS | RULES | SYSTEM

LOGON |

StopAl RestartAll |

Cancel /
Specialld Rule Filename |Step (LastStep)| Action | Status | Intemal | Block |isMoved [Req q d Start Stop Stop /
Restart
Rule Current BTG Cancel

Mame:rulesenddivedt) /fdata TRANSFERTASK step in N 2009-10-20 | 2009-10-20
PRRIITRIEMIONGL yonemhans: faueaztgr(TRANSFERTAS © | nunning p'ep”t‘“s'“g 040 | false bpargl0Z) bpargl3) oo s 1 92lisii3i30,068 _IStup
SENDMODE hctive | °F Festar
Rule Curent | LG Cancel

Yameinesenddired| fidats | TRANSFERTASK + : 2009-10-20 | 2009-10-20
msirangssnensssy] e esenddedt - fidats | TRANSFERTA 0 1P brepronessing 2350 | false |boaroinz bosrotns | 2001020 | 1008020 | gy |

Hosts
You can edit Hosts configuration from here.
Host ID [Address [Port [SSL HostKey [Admin Role
@ @ @ @| @
Create
Filter on Host Id: @
Filter on Address: @
Filter on S5L: @ [Filter] [Clear]
Host 1D Address Port 1SS HostKey .I;Iole Update | Delete | TestConn CloseConn

— - — - - - | {Connected)
o= S W= 6666 - [Update “ Delete “ TesiConn | c1oseConn
g TS 6666 P Update || Delete || TestConn || CloseCaonn
ey = 6666 (= Update || Delete || TestConn || CloseConn

|
The Rules screen

(T - =
o ||/_\||313 i ST D-ax H & Rules X i Tr 88

Task Type Path argument Delay Comment (optional) -
[LOG [~] 0 [ADD BEFORE || REMOVE |
|MOVERENAME [~] 0 | ADD BEFORE || REMOVE |
|RESCHEDULE [+] -delay 10000 -case C -count3 0 | ADD BEFORE || REMOVE |

[ADD AFTER || SET || CANCEL

The System screen

[.]Hm START | TRANSFERS | HOSTS | RULES | SYSTEM | LOGON |

System
fou can edit System configuration from here, disconnect from the Administrator or even shutdown the OpenRee server,
Bandwidth Session Read Limit (B/s): IU @
Bandwidth Session Write Lirnit (B/s): |0 @
Bandwidth Global Read Limit (B/s): |50000000 @
Bandwidth Global Write Limit (8/5): 50000000 (7]
Delay for Commander (ms): ISUDU @
Delay for Retry (msi: |3U|JU|J @
Yalidate | Festare

Disconnect from OpenRA6 Administratar Disconnect |®
Shutdown OpenR66 Server Shutdown |@

It is possible to "block" or "unblock" new requests, such that someone can wait that all
current requests are over to shutdown his/shis Waarp server without interrupting requests.

One can change the language support, separately for Server and Web interface. One can
also change dynamically the LOG level of the server.

The Special Configuration fields (System menu)

Business

Each host name specified here will have the ability to make business request (special Java
Class to handle B2B functionalities). This information could be passed through the XML
configuration file or through the Business field of the Host configuration in the database
(System Menu). The format is:

<business><businessid>idl</businessid><businessid>id2</busine
ssid>...</business>

Roles

If specified for one host, this will override database roles. By default, local server should be
added as role = FULLADMIN in XML file. This information could be passed through the
XML configuration file or through the Roles field of the Host configuration in the database
(System Menu). The format is:

<roles><role><roleid>idl</roleid><roleset>rolesSet</roleset><
/role>...</roles>

* Where idx is an host id (1 by 1) for which you require to override default database
roles

* Where rolesSet is a set of roles, with separators as blank or'|'

The roles assign to this host between NOACCESS, READONLY,
TRANSFER, RULE, HOST, LIMIT, SYSTEM, LOGCONTROL,
PARTNER (READONLY, TRANSFER) ,

CONFIGADMIN (PARTNER, RULE, HOST),

FULLADMIN (CONFIGADMIN, LIMIT, SYSTEM, LOGCONTROL)

Example: PARTNER | LOGCONTROL

Aliases

This will allow alias usage for host ids. This information could be passed through the XML
configuration file or through the Aliases field of the Host configuration in the database
(System Menu). The format is:

<aliases><alias><realid>realld</realid>»<aliasid>»aliasSet</ali
asid></alias>...</aliases>

* Where realld is the real host id that will have aliases (locally defined).

* Where aliasSet is a set of alias, with separators as blank or'|'
Example: aliasl|alias?

Other

By default, this field contains the <root><version>version</version></root> xml
information, handle by Waarp to check the database configuration version compared to the
Waarp program, in order to allow automatic update.

Note that automatic update could be prevented by setting in XML configuration file
<db>dbcheck>False</dbcheck>...</db> or through Java property
-Dopenr66.startup.dbcheck=0

In case the database is shared among several R66 servers, to be able to see all transfer
logs from the Administration Web interface, you need to set a special option in the "Other
informations" with the identifier tha will be used to connect to this web interface.

<root>...<seeallid>idl,id2,...,1dn</seeallid></root>

Such containt will allow any of the ids id1, id2, ... or idn to see, once connected to the
administration web interface, the full content of the database from the transfer menu. Note
however that those ids need to have also the CONFIGADMIN role since this ability has to
be controlled (see Roles item to see how to configure the roles).

Waarp Central Administrator

The Waarp Administrator assembles several tools from Waarp sub projects into one:

-

| £ Waarp R6b Central Administrator | =RaC |i3-

| Edit XML | Edit Password | Manage Configuration File Transfer | QUIT

To be able to use it, you must first create a Client configuration XML file, then add this
"client" as a "FullAdmin" in each of the R66 server configuration you would like to act on.

* Waarp Xml Editor : in order to edit XML configuration file

,—
File Look & Feel Help -
¢ @l © B D B

it | Edit ¥ML dacument

uulqu::, —graua, e
“ﬁ| XAmple-GG - OpenRB6.xsd : config-serverf.xml |

»

ZML Goldenate Editor: F Golubow & F Bregier 2010

Ekg config
@’ comment Example of config file: change its as your need.
[ES identity hostid="hosta"
@? hostid hosta
& sslhostid hostas
= HS: G serveradmin monadmin
— & serverpasswd xfSHZzfPNRo= i

] & authentfile [l D: \eG\R66 \onf\OpenR 66 -authent-A. xml |
I M ES network
@? serverport BEe6G
& serversslport 6ss7 ®

@? serverhttpport 3055

@ serverhttpsport (3057 LI

I V| ES ssl

Sequence Group

& keypath [D: \GG\R&6 certs\testssinocert. jks |
G keystorepass | testssinocert

XML Configuration Document:
D:\GE\R66\conf\config-serverh.xml

Folder:

k.]

* Waarp Password : in order to be able to create des key file and ggp password files

[£:| GoldenGate Password GUI = | = X

File Password Help

CAGGIRGE\cerns test-key. des

CAGGIRGE\certstest-passwd.gap

a5847abebb2eb5230554eb160326e701893eechv14f52fCh

* Waarp R66 Gui : in order to be able to directly comunicate with R66 servers from
the Central Administrator GUI (for testing or for real usage)

4| OpenR66 Client Gﬂ]‘

File Help

[Chedk Connection] HostID szarqlﬂﬂ -

Rule |NoRuleFound v | [[/MD5maode

Information

Filepath j Find File

Starts Transfer

It allows also some other functionalities, bringing native Server functions within this Central
Administrator GUI in remote mode:

¢ Get or Set Bandwicth limitation

[\ Admin Re6 Operations GUI 0 L= [0
|T Ba idth] t I’C- figuration management r Log management r Shutdown servers |
| HostAuth: hostbs address: 127.0.0.1:6677 isS5L: true admin: true isClient: false (48) | - | | Get Bandwidth current configuration |
Global Limit Write [0 | Read [0 |
Session Limit Write [0 | Read [0 |
| Set Bandwidth configuration |
| Close | W

» Export or Import Host / Rules configuration

<) Admin Re6 Operations GuI » = | Bl
f Ba idth g t ITConﬁguration management r Log t r Shutdown servers |
| HostAuth: hostbs address: 127.0.0.1:6677 isS5L: true admin: true isClient: false (48) | - |
Rule to Get | | [] Hosts [] Rules | Get current configuration |
Rule to Put | [_] Purge Hosts [] Purge Rules Set configuration
* Log export
<) Admin Re6 Operations GuI » = | Bl
f Bandwidth management rConﬁguration management IT Log t r Shutdown servers
[HostAuth: hostbs address: 127.0.0.1:6677 isSSL: true admin: true isClient: false (48) [=]
[] Purge [l Clean NB: if no dates specified, all before yesterday midnight ; Date format : yyyyMMddHHmmss 555 (completed on right side by "0")
Dates | | | |
Rule to Export Export Logs

¢ Shutdown

ﬁ@ Admin R66 Operations GUI

-

f Bandwidth management rConﬁguration management r Log

t h”?‘ td Servers

| HostAuth: hostbs address: 127.0.0.1:6677 isS5L: true admin: true isClient: false (48)

Password

Shutdown

Waarp R66 GUI

A Graphical User Interface has been done to enable:
» Checking the connection to a remote Host
* Initiate a synchronous transfer to a remote Host

Note that the client is by default without any database support, meaning that the client
cannot be the target of a new transfer initiated by a remote host. So the reason that
transfers allowed are only synchronous one, but they can be either in receive or send
mode.

i 8|
About: OpenR66 Client GUI 1.0.0 o

About: OpenR66 Client GUI 1.0.0

Java desktop interface for OpenRas Client without
database support that enables to check connection or to
start a synchronous transfer,

Product Version: 1.0.0

Author: Frédéric Brégier.
Homepage: http: {fopenrés. free fr
il
F ﬂr‘
| £ OpenRE6 Client GUI e R
File Help
[Check Connection] HostID :bparqlﬂﬂ -
Rule :N::F'.ulanund - [] MD5 mode
Information
Filepath Find File
Starts Transfer

["

From version 2.1.2, the filepath is now changed to an URL notation as file:/path in order to
cover the Windows path with "space" character and "accents" in names.

Thrift support for R66

Waarp Thrift is repository of Thrift definitions for Waarp project.

It implements a Thrift interface. It allows one to develop his own interface to one Waarp
project using his own langage (according to Thrift support).

The first item is for Waarp R66.

The “usethrift” option (specifying a port > 0) allows to enable the Thrift server support in
one R66 server. Currently only Synchronous Binary thrift protocol is allowed, so a client
should use “Tsocket” for its Ttransport and “TbinaryProtocol” for its Tprotocol.

One example in Java is given in org.waarp.openr66.protocol.test. TestThriftClientExample
to show how to interact with the Thrift R66 service.

This option should enables more capabilities to R66 to be embedded in existing
applications, in a more large cover than just Java.

The current methods available are:

* transferRequestQuery: allows to initiate a submitted transfer from the related
R66 server to another one. Note that the request could be asynchronous
(immediately returns once the request is submitted) or synchronous (returns only
once the request is done, whatever in error or in success, but it does not take into
account future reschedule if any as it will return the status once the current try is
over).

* InfoTransferQuery: allows to request some information on one particular
transfer request

* isStillRunning: allows to quickly have the information on one particular transfer
request running status or not

* infoListQuery: allows to get the information on file list on the local R66 server

Note that the Thrift service, for security reason, is only opened on 127.0.0.1 address since
no authentication is made, as it stands for a local service.

http://thrift.apache.org/
http://thrift.apache.org/
http://thrift.apache.org/

Waarp Local Exec

This daemon enables to execute efficiently external command like System.exec using an
independent daemon. The main idea behind is that each System.exec will fork the current
Java process. Therefore with high memory usage, this fork takes long time and is memory
limited. With this daemon, the memory footprint is limited to a minimum and therefore the
fork costs really less than standard JVM process. The gain is about 2 to 3 times faster than
internal standard execution.

No SSL version takes 3 optional arguments:
* no argument: implies 127.0.0.1 + 9999 port
e arguments:
© "addresse" "port"

© "addresse" "port" "default delay"

SSL version takes 3 to 8 arguments (last 5 are optional arguments):
* mandatory arguments: filename keystorepaswwd keypassword

* if no more arguments are provided, it implies 127.0.0.1 + 9999 port and no
certificates

» optional arguments:

°© "port"

© "port" "trustfilename" "trustpassword"

© "port" "trustfilename" "trustpassword" "addresse"

°© "port"™ "trustfilename" "trustpassword" "addresse" "default

delay"

Waarp Xml Editor

To configure an Waarp programs, most of the time you need to first create the XML files as
needed.

To help the administrator to generate correct files, XSD models are defined to be used with
an extension of the project Xample (XML Gui Editor) from Felix Golubov. This program
was extended to support more flexibility on File and Directory selection.

We provide both program (original one from Felix Golubov and the extended one). By no
means Waarp is proprietary of this software. The only work was to extend through the API
given by its original creator: Thank to Felix Golubov.

Below is an example of the GUI.

| CHYUES, WOl IauA, IS

| 5| XAmple-GG - OpenRe6xsd : config-serverAaml
File Lock & Feel Help

lit | Edit ¥ML document

AML GoldenGate Editor: F Golubow & F Bregier 2040 -

M EkS config

& rcomment Example of config file: change its as your need.
ES identity hestid="hosta"

(& hostid hosta
@? sslhostid hostas
& serveradmin monadmin

& serverpasswd xfSHZzfPNRo=

& authentfile [D:\GGR &6 \conf\OpenR66-authent-A. xml |
EkS network

@ serverpork BE6E

@ serversslport |ss57

| sl

@ serverhttpport 3055

@ serverhttpsport (3057 Ll

[@7 E5 ssl

Sequence Group

G keypath [l D: \GG\R &6 certs \testssinocert. jks |
& keystorepass | testssinocert

¥ML Configuration Document:
D:\GE\R66\conf\config-serverh.xml

Folder:

http://www.felixgolubov.com/XMLEditor/

Waap Password Tool

For Waarp project, you might need to provide a password in the format accepted by
Waarp. You need a specific DES Key for the crypted password support. DES crypted
support and generation are available through the Waarp Password GUI project.

It enables the creation of DES key file and the associated password file (Waarp Password
was GoldenGate Password = GGP).

Both a GUI and command are available.

Command options are:
* -ki file to specify the Key File by default
* -ko file to specify a new Key File to build and save
* -pi file to specify a GGP File by default(password)
* -des to specify DES format (default)
* -blf to specify BlowFish format
* -pwd to specify a clear password as entry
* -cpwd to specify a crypted password as entry
* -po file to specify a GGP File as output
* -clear to specify uncrypted password shown as clear text

r -

| £| GoldenGate Password GUI = = &g

File Password Help

CAGGIRGE\cernstest-key. des

CGG\RGE\certs\test-passwd.gap

a5847a6ebb2eb5230554eb160326e701893eech714521CE

Waarp FTP

The Waarp project starts with a new fresh FTP(S) server implementation, fully in Java
according to the following RFC:

+ RFC 959
« RFC 775
+ RFC 2389
+ RFC 2428
+ RFC 3659
« RFC 4217
It includes also the following extra commands from version 0.9.2:
* XCRC to compute CRC on a remote file
« XMD5 to compute MD5 on a remote file
+ XSHA1 to compute SHA-1 on a remote file
* INTERNALSHUTDOWN to allow to shutdown the server (protected command)

It is based mainly on the NETTY framework (NIO great framework support) and is tend to
be really efficient, both in term of memory, threads and network bandwidth. Bandwidth
limitation can be configured both in store and retrieve, per session (although only one
value is set by default, but it can be changed dynamically if needed) or globally to the
server and of course with no limitation at all if wanted. Limitation should be enough to
change the bandwidth behaviour for instance depending on the time in the day, so as to
allow to limit bandwidth usage when users are at work and in contrary to allow more speed
when only batchs are running.

The specificity of this project is that you can adapt this software to your particular needs
by:

» changing the pre or post action on commands (not ony transfer),

* changing the underlying representation of files and directories (for instance with
database entries),

* using any particular authentication mechanism.

Currently this FTP Server handle the following implementations but you can extend it to fit
your needs:

» File and Directory can be true File and Directory (default version), but they can also
be something else, for instance data from database, from LDAP or whatever you
want, as long as you can implement the interface (Dirlnterface and Filelnterface).

http://netty.io/
http://tools.ietf.org/html/rfc4217
javascript:var%20EffectiveNewWin%20=%20window.open('http://tools.ietf.org/html/rfc3659','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();
javascript:var%20EffectiveNewWin%20=%20window.open('http://tools.ietf.org/html/rfc2428','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();
javascript:var%20EffectiveNewWin%20=%20window.open('http://tools.ietf.org/html/rfc2389','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();
javascript:var%20EffectiveNewWin%20=%20window.open('http://tools.ietf.org/html/rfc775','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();
javascript:var%20EffectiveNewWin%20=%20window.open('http://tools.ietf.org/html/rfc959','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();

» Authentication can be whatever you want: file based (default version), or others like
database, LDAP or whatever you want, as long as you can implement the interface
(Authinterface)

» Actions on pre or post commands can be configured from 2 classes, one business
from control connection and one business from data connection (abstract classes
BusinessNetworkHandler and DataBusinessNetworkHandler)

* Logger can be setup as you want: SLF4J (default using LOGBACK) or whatever
you want, as long as you can implement the abstract classes (FtplnternalLogger
and FtpinternalLoggerFactory)

So at most, if you want to implement all new, you will have to implement only 7 classes,
plus of course the main class one that will launch the server itself.

If you just want a simple FTP Server, then you've just have to instantiate the main class
and reused the default implementation that is proposed. The Simplelmpl package shows
one example.

Extending the server should not be difficult. For instance, adding a new command is as
easy as:

* Create a new class that extends the AbstractCommand class

* Add a reference to it into the FipCommandCode class
That's it!

Adding a new response code is even easier, you have just to add an entry in
FtpReplyCode class.

From version 1.1.2, FTP server allows SSL support (FTPS) both as Implicit (native
SSL/TLS support on wire level) and Explicit (using commands such as AUTH and PROT).

This project is in production in the French Ministery of Finances to enable file transfers
from an FTP protocol (client side) to an Waarp R66 protocol (server side protocol) since
end of 2007.

javascript:var%20EffectiveNewWin%20=%20window.open('http://logback.qos.ch/','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();
javascript:var%20EffectiveNewWin%20=%20window.open('http://www.slf4j.org/','_blank','directories,location,menubar,resizable,scrollbars,status,toolbar');%20EffectiveNewWin.focus();

Configuration of Waarp FTP

How to configure Waarp Ftp using default implementation

In the zip distribution WaarpFtp-X.Y.Z-dist.zip, you will find an extra directory named:
src/main/config where two examples files are: config.xml and authent.xml.
Those two files are related to the simple implementation of the Ftp Server.

The first one (config.xml) specifies the general behavior:
» server password (for admin functions)

» server port, home directory, bandwidth limitation, optional server address (in case of
NAT for instance)

» server special configuration like threads number, timeout of connection,
deleteOnAbort, usenio, fastmd5, blocksize, rangeport and the localization of the
authentfile (second file)

The second one is a simple authentication file containing user definition (user name,
password, account, admin status).

These two files are for the simple implementation (which is a simple FtpServer without any
special actions), and using a simple authentication mechanism (from authent.xml). The
simple Ftp Server is included in the WaarpGatewayFtp-Simpleimpl-X.Y.Z.jar

It can be started like:

java ... classpath and jvm settings ... org.waarp.ftp.simpleimpl.SimpleGatewayFtpServer
src/main/config/config.xml

Note that in the classpath you need :
+ External jars:
o Netty,
o Apache Common IO,
o DOM4J,
o Jaxen,
o Logback
* Waarp jars:
o WaarpDigest,
o WaarpCommon
o and of course the WaarpGatewayFtp-Core

o probably the WaarpGatewayFtp-Filesystem (except if you want to implement
virtual Directory and File in something different than true directories and files)

o (and if you are ok with the default implementation) the WaarpGatewayFtp-
Simpleimpl jars.

http://waarp.github.io/Waarp/Common.html
http://waarp.github.io/Waarp/Digest.html
http://logback.qos.ch/
http://jaxen.codehaus.org/
http://dom4j.sourceforge.net/
http://commons.apache.org/io/
http://netty.io/

Some of them can be replaced if you change the implementation (Common 10 is optional,
Dom4J and Jaxen are only used if XML configuration file is used, Logback could be
replaced with other logger framework, see the org.waarp.common.logging from
WaarpCommon where JDK is also supported, others can easily be supported).

If you want to implement something different, here are the files you may want to re write.
They can all be found in the simpleimpl sub package at Waarp.ftp.simpleimpl package. A
perfect example is the WaarpGatewayFtp sub project.

» the server startup itself : SimpleGatewayFtpServer
» the Configuration file : config.FileBasedConfiguration

By default an XML file is used. If you want to use other ways to implement the load of the
configuration, you can change this implementation by the one you want (for instance from
a database).

If you want to include some others configurations properties and XML is ok for you, you
can extend it to fit your needs.

» the virtual Directory, File implementation : file.FileBasedDir, file.FileBasedFile

For instance, if you want to implement File and Directory as content in a database, you will
have to not use the WaarpFtp-Filesystem-X.Y.Z.jar package an to implement your own File
and Directory representation.

If you are OK with real file and directory, then nothing has to be done.
» the authentication system : file.FileBasedAuth and its associated file.SimpleAuth

For instance, if you want to inherit authentication from a LDAP, you will have to implement
your own extension of org.waarp.ftp.filesystembased.FilesystemBasedFtpAuth instead of
this simple one.

* then you have two classes that implements business actions on pre and post
actions on transfer:

o control.SimpleBusinessHandler : for the control connection of FTP service

o data.FileSystemBasedDataBusinessHandler : for the data connection of FTP
service

By default, this classes does nothing except logging.

To shutdown the service, either you do a CTRL-C (or better if Unix but not IBM JDK Kill
-SIGUSR1 <processID>), or better you connect as an admin user and execute the special
command:

internalshutdown <password>
where the password is the one in the config.xml for admin actions.

For instance, using FTP from windows you have to type
>quote internalshutdown password

Note that this FTP Server can be used as a simple one, but also for more complicated

http://waarp.github.io/Waarp/WaarpGatewayFtp.html
http://waarp.github.io/Waarp/WaarpGatewayFtp.html

cases. It is in the middle of a self FTP server (simpleimpl package) and a framework to
implement its own FTP service, which is the main reason of this project since I've not
found any other open source implementations allowing to have pre or post actions on
transfers or commands.

WaarpGatewayFtp

A specific package names WaarpGatewayFtp is a real example (in production) of a Waarp
Gateway FTP server implementing pre or post actions on transfers and links with Waarp
R66.

It add also some functionalities like:

» The ability to change dynamically the authentication through an extended SITE
command

* The ability to specify explicit command to be executed before (RETR) or after
(STOR like operations)

From V2.0
« The ability to specify command for each User
» The ability to save logs of transfers in a database (optional)
* An administrator interface in HTTPS
* The ability to use the Waarp LocalExec Daemon instead of internal System.exec()
* The ability to use limitation on CPU or number of connections
* The support of SNMP agent included in the WaarpFtpExec daemon
From version 2.1.2, FTPS is supported (both Implicit and Explicit forms).

From version 2.1.4, JAVAEXEC is allowed, with an implementation similar to R66. A
default Log action is available for testing.

From version 2.1.6, using a JAVAEXEC and the class JavaExecutorWaarpFtp4jClient from
the module Waarp FTP Client (see Waarp Commons), it is possible to use a remote FTP
server as target of this Gateway.

The configuration files are specific and different than WaarpGatewayFtp standard server.
Like for Waarp R66, xsd files are provided and compatible with the Waarp XmlEditor
(Waarp Xml Editor).

The SSL support for the administrator is configurable as for Waarp R66 (see For SSL
connection without authentication of clients).

http://waarp.github.io/Waarp/WaarpR66Configuration.html
http://waarp.github.io/Waarp/WaarpR66Configuration.html
http://waarp.github.io/Waarp/XmlEditor.html
http://waarp.github.io/Waarp/XmlEditor.html
http://waarp.github.io/Waarp/XmlEditor.html
http://waarp.github.io/Waarp/XmlEditor.html
http://waarp.github.io/Waarp/LocalExec.html

	Presentation
	Open Source
	Production purpose
	Professional services

	Support
	What is Waarp?
	From where comes the idea of Waarp?
	Why a proprietary protocol therefore ?
	What kind of proprietary protocol is it?

	Waarp R66: software for massive file transfer with monitoring: Waarp Route66
	Download
	Packages

	Presentation of Waarp R66: Massive File Transfer Monitor
	Efficient and secured
	Adaptation to functional needs
	Pre and Post transfer procedures
	Integration, Administration and Production
	History of transfers
	Independence with server platforms
	Usage mode
	Partners: who are they?
	How to operate R66 transfers
	Usable with many kind of Databases(centralized or distributed)

	Some basic definitions and understanding
	What is client/server/heavy client
	Who is the requester/requested
	What are rule types
	What happens with the task
	What are the synchronous/asynchronous mode
	What are the various usages of folders

	Installation
	XML Configuration
	Password configuration
	Cryptography
	For SSL connection without authentication of clients
	For SSL connection with authentication of clients

	Database configuration
	Logging
	Extra Waarp JVM Options
	XML configuration
	Waarp R66 Server Configuration File
	Waarp R66 Client Configuration File
	Waarp R66 Client Without Database Configuration File
	Waarp R66 Client for Submit Only Configuration File
	Waarp R66 Limit Configuration File
	Waarp R66 Rule Configuration File
	Waarp R66 Authentication Configuration File

	Tasks in rules
	LOG
	MOVE
	MOVERENAME
	COPY
	COPYRENAME
	VALIDFILEPATH
	DELETE
	LINKRENAME
	RENAME
	EXEC
	EXECMOVE
	EXECOUTPUT
	EXECJAVA
	TRANSFER
	RESCHEDULE
	TAR
	ZIP
	TRANSCODE
	SNMP
	FTP

	Waarp R66 Options
	Limit CPU / Connexion
	Check of IP on servers and clients
	Host as Client
	Cryptographic support
	Store Task within XML file for Thin Client
	Usage of No Database for Server
	Control on restart transfer
	Usage of Waarp LocalExec Daemon
	Usage of FastMD5 support
	Usage of the same database between several R66 servers
	Usage of Multiple Monitors support
	Usage of Thrift support
	Error task on Init step transfer
	Windows Service support
	Usage of ExecJava class
	Transcode support
	FTP Client support
	Proxy/Reverse Proxy support
	Global Digest support
	Self Request
	Enhanced capability to handle filename with "blank" characters
	Possibility to block/unblock new requests
	Focus on RESCHEDULE Task
	Add support for internationalization
	Controling output format
	Wildcard character in request of transfer or submit
	The Special Configuration fields (System menu)
	Business
	Roles
	Aliases
	Other

	Waarp R66 Internals
	R66 Protocol
	Startup
	Authentication
	Request
	Pre-Tasks
	Data Transfer
	Post-Actions
	End Request

	File Status
	If the Host is the sender:
	If the Host is the receiver:
	Transfer Restarting

	Commands
	R66Server
	ServerInitDatabase
	ServerExportConfiguration
	ConfigExport
	ConfigImport
	ServerShutdown
	LogExport
	LogExtendedExport
	ChangeBandwidthLimits
	SubmitTransfer
	MultipleSubmitTransfer
	DirectTransfer
	MultipleDirectTransfer
	SendThroughClient
	RecvThroughClient
	ProgressBarTransfer
	RequestTransfer
	RequestInformation
	Command line helper

	Dependencies
	Wiki part
	R66Authentication
	Special configuration

	Centralization of Logs
	R66 Cluster or HA
	Some specific technical items
	Usage of the same database between several R66 servers
	Usage of Multiple Monitors support

	R66 in DMZ
	Waarp Gateway FTP
	Waarp R66 in forward mode
	Waarp Proxy R66

	R66 Embedded
	Natively in Java
	Outside Java

	R66 with Other Protocols
	Native integration
	Task through integration

	Platform compatibility
	Waarp R66 Administration & Monitoring
	Http Monitoring
	SNMP monitoring
	HTTPS Administrator
	The Special Configuration fields (System menu)
	Business
	Roles
	Aliases
	Other

	Waarp Central Administrator
	Waarp R66 GUI
	Thrift support for R66

	Waarp Local Exec
	Waarp Xml Editor
	Waap Password Tool
	Waarp FTP
	Configuration of Waarp FTP
	WaarpGatewayFtp

